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Abstract: The nmltiscale retinex with color restoration (MSRCR) has shown itself to be a

very versatile automatic image enhancement algorithm that simultaneously provides dynamic

range compression, color constancy, and color rendition. A number of algorithms exist that

provide one or more of these features, but not all. In this paper we compare the performance

of the MSRCR with techniques that are widely used for image enhancement. Specifically,

we compare the MSRCR with color adjustment methods such as gamma correction and

gain/offset application, histogram modification techniques such as histogram equalization

and manual histogram adjustment, and other more powerful techniques such as homomorphic

filtering and 'burning and dodging'. The comparison is carried out by testing the suite of

image enhancement methods oil a set of diverse images. We find that though some of these

techniques work well for some of these images, only the MSRCR performs universally well on

the test set.

3. D. J. Jobson, Z. Rahman, and G. A. Woodell, "Retinex Image Processing: Improved Fi-

delity To Direct Visual Observation," IS&T Fourth Color Imaging conference: Color Science,

Systems, and Applications, Scottsdale, AZ, (November 1996).

Abstract: Recorded color images differ from direct human viewing by the lack of dynamic

range compression and color constancy. Research is summarized which develops the cen-

ter/surround retinex concept originated by Edwin Land through a single-scale design to a

multi-scale design with color restoration (MSRCR). The MSRCR synthesizes dynamic range

compression, color constancy, and color rendition, and, thereby, approaches fidelity to direct

observation.

4. Z. Rahman, D. J. Jobson, and G. A. Woodell, "Multiscale Retinex for Color Image Enhance-

ment," in Proceedings of the IEEE International Conference on Image Processing, Lausanne,

Switzerland, (September 1996).

Abstract: The retinex is a human perception-based image processing algorithm which pro-

vides color constancy and dynamic range compression. We have previously reported on a

single-scMe retinex (SSR) and shown that it can either achieve color/lightness rendition or

dynamic range compression, but not both simultaneously. We now present a multi-scale

retinex (MSR) which overcomes this limitation for most scenes. Both color rendition and dy-

namic range compression are successfully accomplished except for some "pathological" scenes

that have very strong spectral characteristics in a single band.

5. F. O. Huck, C. L. Fales, and Z. Rahman, "On the Information-Theoretic Assessment of Visual

Communication," in Proceedings of the IEEE International Conference on Image Processing,

(September 1996).

Abstract: This paper deals with the extensions of information theory to the assessment of vi-

sual communication from scene to observer. The mathematical development rigorously unites

the electro-optical design of image gathering and display devices with the digital processing

algorithms for image coding and restoration. Results show:
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1 Publications

Publications are listed chronologically in each category.

.

Conferences

Z. Rahman, F. O. Huck, and C. L. Fales, "Informationally Optimized Image-gathering and

Restoration," presented at the IS_T's 50th Annual Conference, Cambridge, MA, (May 1997).

Abstract: The goal of image gathering and restoration often is to produce the best possible

picture in terms of fidelity, sharpness and clarity. However, this goal cannot be attained, at

it has been pursued in the past, by treating image gathering and restoration as independent

tasks. Instead, in a clean departure from the mores of traditional image processing, we present

an approach that rigorously uses modern communication theory to optimally combine the

electro-optical design of the image gathering device with the digital processing algorithm for

image restoration. Extensive simulations have shown that there exists a strong correlation

between the information rate that is produced by the image gathering device and the image

quality with which an image can be restored.

Z. Rahman, G. A. Woodell, and D. J. Jobson, "A Comparison of the Multiscale Retinex With

Other Image Enhancement Techniques," Proceedings of the IS&:T's 50th Annual Conference,

Cambridge, MA, (May 1997).



• End-to-endsystemanalysiscloselycorrelateswith measurableand perceptualperfor-
mancecharacteristics,suchasdata rateandimagequality,respectively.

• The goalof producingthe bestpossibleimageat the lowestpossibleimagedata rate
canbe realizedonly if (a) the electro-opticaldesignof the image-gatheringdeviceis
optimizedfor the rnaximum-realizableinformationrate and (b) the image-restoration
algorithmproperlyaccountsfor theperturbationsin the visualcommunicationchannel.

6. Z. Rahman,D. J. Jobson,andG. A. Woodell,"MultiscaleRetinexfor DynamicRangeCom-
pressionand Color Rendition,"Applications of Digital Image Processing XIX, Andrew G.

Tescher, Ed., Proc. SPIE 2847, (August 1996).

Abstract: The human vision system performs the tasks of dynamic range compression and

color constancy almost effortlessly. The same tasks pose a very challenging problem for

imaging systems whose dynamic range is restricted by either the dynamic response of film, in

case of analog cameras, or by the analog-to-digital converters, in the case of digital cameras.

The images thus formed are unable to encompass the wide dynamic range present in most

natural scenes (often > 500 : 1). Whereas the human visual system is quite tolerant to

spectral changes in lighting conditions, these strongly affect both the film response for analog

cameras and the filter responses for digital cameras, leading to incorrect color formulation in

the acquired image. Our multiscale retinex, based in part on Edwin Land's work on color

constancy, provides a fast, simple, and automatic technique for simultaneous dynamic range

compression and accurate color rendition. The retinex algorithm is non-linear, and global

output at a point is also a function of its surround--in extent. A comparison with conventional

dynamic range compression techniques such as the application of point non-linearities, e.g.

log(x,y), and global histogram equalization and/or modification shows that the rnultiscale

retinex simultaneously provides the best dynamic range compression and color rendition. The

applications of such an algorithm are many; from medical imaging to remote sensing; and

from commercial photography to color transmission.

7. Z. Rahman, "Integrated wavelet compression and restoration," Wavelet Applications in Sig-

nal and Image Processing IV, Michael A. Unser, Akram Aldroubi, Andrew F. Laine, eds.,

Proc. SPIE 2825, (August 1996).

Abstract: The performance of wavelet compression algorithms is generally judged solely

as a function of the compression ratio and the visual artifacts which are perceivable in the

reconstructed image. The problem then becomes one of obtaining the best compression

with fewest visible artifacts--a very subjective measure. Our wavelet compression algorithm

uses an information theoretic analysis for the design of the compression maps. We have

previously shown that maximizing the information for a given visual communication channel

also maximizes the visual quality of the restored image. We utilize this to design quantization

maps which maximize information for a given compression ratio. Hence we are able to design

quantization maps which maximize the restorability of an image--i.e, the information content,

the image quality, and the mean-square difference fidelity--for a given compression ratio.



Journal Articles

D. J. Jobson,Z. Rahman,andG.A. Woodell,"A Multi-ScaleRetinexForBridgingthe Gap
BetweenColorImagesandtheHumanObservationof Scenes,"IEEE Transactions on Image

Processing, Special Issue on Color Processing, (July 1997).

Abstract: Direct observation and recorded color images of the same scenes are often strik-

ingly different because human visual perception computes the conscious representation with

vivid color and detail in shadows, and with resistance to spectral shifts in the scene illuminant.

A computation for color images which approaches fidelity to scene observation iemimusti/emL

combine dynamic range compression, color consistency--a computational analog for human

vision color constancy--and color and lightness tonal rendition. In this paper, we extend a

previously designed single scale center/surround retinex to a multi-scale version that achieves

simultaneous dynamic range compression/color consistency/lightness rendition. This exten-

sion fails to produce good color rendition for a class of images that contain violations of the

gray-world assumption implicit to the theoretical foundation of the retinex. Therefore we

define a method of color restoration that corrects for this deficiency at the cost of a modest

dilution in color consistency. Extensive testing of the multi-scale retinex with color restoration

on several test iem; scenesi/em/, and over a hundred images did not reveal any pathological

behavior.

2. D. J. Jobson, Z. Rahman, and G. A. Woodell, "Properties and Performance of a Cen-

ter/Surround Retinex," IEEE Transactions on Image Processing, (March 1997).

Abstract: The last version of Edwin Land's retinex model for human vision's lightness and

color constancy has been implemented and tested in image processing experiments. Previous

research has established the mathematical foundations of Land's retinex but has not subjected

his lightness theory to extensive image processing experiments. We have sought to define a

practical implementation of the retinex without particular concern for its validity as a model

for human lightness and color perception. Here we describe the trade-off between rendition

and dynamic range compression that is governed by the surround space constant. Further,

unlike previous results, we find that the placement of the logarithmic function is important

and produces best results when placed after the surround formation. Also unlike previous

results, we find best rendition for a "canonical" gain/offset applied after the retinex operation.

Various functional forms for the retinex surround are evaluated and a Gaussian form found

to perform better than the inverse square suggested by Land. Images which violate the gray

world assumptions (implicit to the retinex) are investigated to provide insight into cases where

the retinex fails to produce a good rendition.

3. F. O. Huck, C. L. Fales, and Z. Rahman, "An Information Theory of Visual Communica-

tion," Philosophical Transactions of the Royal Society A: Physical Sciences and Engineering,

(October 1996).

Abstract: The fundamental problem of visual communication is that of producing the best

possible picture at the lowest data rate. We address this problem by extending information
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theoryto theassessmentof the visualcommunicationchannelasa whole,from imagegath-
eringto imagedisplay.Theextensionunitesthe twodisciplines,the electro-opticaldesignof
image-gatheringanddisplaydevicesandthe digital processingfor imagecodingandrestora-
tion. Themathematicaldevelopmentleadsto severalintuitively attractivefiguresof merit for
assessingthe visualcommunicationchannelasa functionof the critical limiting factorsthat
constrainits performance.Multiresolutiondecompositionis includedin the mathematical
developmentto optimally combinethe economicalencodingof the transmittedsignalwith
imagegatheringandrestoration.

Quantitativeandqualitativeassessmentsdemonstratethat a visualcommunicationchannel
ordinarily canbeexpectedto producethe bestpossiblepictureat the lowestdata rateonly
if the the image-gatheringdeviceproducesthe maximum-realizableinformationrate andthe
image-restoration-algorithmproperlyaccountsfor the critical limiting factorsthat constrain
visual communication.Theseassessmentsencompass(a) the electro-opticaldesignof the
image-gatheringdevicein termsof tile trade-offbetweenblurring andaliasingin thepresence
of photodetectorandquantizationnoises,(b) the compressionof data transmissionby redun-
dancyreduction,(c) therobustnessof the imagerestorationto uncertaintiesin thestatistical
propertiesof the capturedradiancefiled,and (d) the enhancementof theparticular features
or, moregenerally,of the visualquality of theobservedimages.The 'bestvisualquality' in
this contextnormallyimpliesa compromiseamongmaximum-realizablefidelity, sharpness,
andclarity whichdependson the characteristicsof the sceneandthe purposeof the visual
communication(e.g.diagnosisversusentertainment).

4. C. L. Fales,F. O. Huck,R. Alter-Gartenberg, and Z. Rahman, "Image Gathering and Dig-

ital Restoration," Philosophical Transactions o/the Royal Society A: Physical Sciences and

Engineering, (October 1996).

Abstract: This paper seeks to unite two disciplines: the electro-optical design of the image

gathering and display devices and the digital processing for image restoration. So far, these

two disciplines have remained independent, following strictly separate traditions However, the

best possible performance can be attained only when the digital processing algorithm accounts

for the critical limiting factors of image gathering and display and the image-gathering device

is designed to enhance the performance of the digital-processing algorithm. The following

salient advantages accrue:

(a) Spatial detail as fine as the sampling interval of the image-gathering device ordinarily

can be restored sharply and clearly.

(b) Even finer spatial detail than the sampling interval can be restored by combining a mul-

tiresponse image-gathering sequence with a restoration filter that properly reassembles

the within-passband and aliased signal components.

(c) The visual quality produced by traditional image gathering (e.g. television camera) and

reconstruction (e.g. cubic convolution) can be improved with a small-kernel restoration

operator without an increase in digital processing.
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(d) Theenhancementof radiance-fieldtransitionscanbe improvedfor dynamicrangecom-
pression(to suppressshadowobscurations)andfor edgedetection(forcomputervision).

Book

F. O. Huck,C. L. Fales,and Z. Rahman, Visual Communication: An Information Theory

Approach, Kluwer Academic Publishers, (June 1997).

From the Publishers' catalog: Visual Communication: An Information Theory Approach

presents an entirely new look at the assessment and optimization of visual communication

channels, such as are employed for telephotography and television. The electro-optical design

of image gathering and display devices, and the digital processing for image coding and

restoration, have remained independent disciplines which follow distinctly separate traditions;

yet the performance of visual communication channels cannot be optimized just by cascading

image-gathering devices, image-coding processors, and image-restoration algorithms as the

three obligatory, but independent, elements of a modern system. Instead, to produce 'the best

possible picture at the lowest data rate', it is necessary to jointly optimize image gathering,

coding, and restoration.

Although the mathematical development in Visual Communication: An Information Theory

Approach is firmly rooted in familiar concepts of communication theory, it leads to formu-

lations that are significantly different from those that are found in the traditional literature

on either rate distortion theory or digital image processing. For example, the Wiener filter,

which is perhaps the most common image restoration algorithm in the traditional digital

image processing literature, fails to fully account for the constraints of image gathering and

display. As demonstrated in the book, digitally restored images improve in sharpness and

clarity when these constraints are properly accounted for.

Visual Communication: An Information Theory Approach is unique in its extension of modern

communication theory to the end-to-end assessment of visual communication, from scene to

observer. As such, it ties together the traditional textbook literature on electro-optical design

and digital image processing. This book serves as an invaluable reference for image processing

and electro-optical system design professionals and may be used as a text for advanced courses

on the subject.



Multiscale Retinex for Dynamic Range

Compression and Color Rendition

Z. Rahman, D. J. Jobson and G. A. Woodell

Applications of Digital Image Processing )(IX

Andrew G. Tescher, Ed., Proc.

SPIE 2847

(August 1996)



A Multiscale Retinex For Color Rendition and Dynamic Range Compression

Zia-ur Rahman t

College of William & Mary, Williamsburg, VA 23187

Daniel J. Jobson and Glenn A. Woodell

NASA Langley Research Center, Hampton, Virginia 23681

Abstract

The human vision system performs the tasks of dynamic range compression and color constancy almost

effortlessly. The same tasks pose a very challenging problem for imaging systems whose dynamic range is restricted

by either the dynamic response of film, in case of analog cameras, or by the analog-to-digital converters, in the

case of digital cameras. The images thus formed are unable to encompass the wide dynamic range present in most

natural scenes (often > 500:1). Whereas the human visual system is quite tolerant to spectral changes in lighting

conditions, these strongly affect both the film response for analog cameras and the filter responses for digital

cameras, leading to incorrect color formulation in the acquired image. Our multiscale retinex, based in part on

Edwin Land's work on color constancy, provides a fast, simple, and automatic technique for simultaneous dynamic

range compression and accurate color rendition. The retinex algorithm is non-linear, and global--output at a

point is also a function of its surround--in extent. A comparison with conventional dynamic range compression

techniques such as the application of point non-linearities, e.g. log(x, y), and global histogram equalization and/or

modification shows that the multiscale retinex simultaneously provides the best dynamic range compression and

color rendition. The applications of such an algorithm are many; from medical imaging to remote sensing; and

from commercial photography to color transmission.

1. Introduction

Human perception excels at constructing a visual representation with vivid color and detail across wide ranging

photometric levels caused by lighting variations. In addition human vision computes color so as to be relatively

independent of spectral variations in illumination. 1 The images obtained with film and electronic cameras suffer,

by comparison, from a loss in clarity of detail and color as light, levels drop within shadows, or as distance from

a lighting source increases. When the dynamic range of a scene exceeds the camera's dynamic range, there can

be irrevocable loss of visual information at both extremes of the scene dynamic range, hnproved fidelity of color

images to human observation should, therefore, combine dynamic range compression, color constancy, and color and

lightness rendition. In this paper we present our initial work in developing a technique, the multiscale retinex with

color restoration (MSRCR), which achieves all these goals.

The idea of the retinex was conceived by' Edwin Land 2' a, 4 as a model of the lightness and color perception of

human vision. Subsequently Hurlbert s, 6 and Hurlbert and Poggio 7 studied the properties of the center/surround

form of the retinex and other lightness theories and found a common mathematical foundation which possesses

some excellent properties but. cannot actually compute reflectance for arbitrary scenes. Certain scenes violate the

"gray-world" assumption which requires that. the average reflect.ances in the surround be equal in the three spectral

color bands. For example, scenes that are dominated by one color--"monochromes"--clearly violate this assumption

and are forced to gray (equal values in all spectral channels) by' the retinex computation. Hurlbert s further showed

the lightness problem has a solution that has a center/surround spatial form. This suggests the possibility that

the spatial opponency of the center/surround is a general solution to estimating relative reflectances for arbitrary

lighting conditions. At the same time it. is equally clear that human vision does not determine relative reflectance

but. rather a context dependent relative reflectance since surfaces in shadow do not appear to be the same lightness

as the same surface when lit. Moore et al. 8, 9 took up the ret.inex problem as a natural implementation for analog

tFunded by NASA Langley Research Center Contract #NAS1-19603 to Science and Technology Corporation, and by Grant #NAG1-

1847 to the College of William & Mary.



VLSI resistive networks and found that color rendition was dependent on scene content--some scenes worked well,

others did not. These studies also pointed out. the problems that. occur with color Mach bands and the graying out

of large uniform zones of color.

The MSRCR builds on the single scale retinex 1° (SSR), and the multiscale retinex 11 (MSR). Both the SSR and

the MSR provide very good dynamic range compression but suffer from tile graying out which occurs in large areas

of uniform color. Hence the overall color/lightness rendition can be poor depending upon the scene. The MSRCR

alleviates this problem by using a color restoration function which controls the amount of color saturation for the

final rendition. This function provides the color restoration that is needed with the dynamic range compression to

approximate the performance of human vision with a computation that is quite automatic and reasonably simple.

The MSRCR is extremely useful for enhancing 8-bit color images that suffer from lighting deficiencies commonly

encountered in architectural interiors and exteriors, landscapes, and non-studio portraiture applications. Potential

benefits for remote sensing applications are improved visibility of color and detail in shadows and low reflectance

zones and the diminution of sun angle/atmospheric signal variations that carl lead to more resilient and accurate

multispectral classification.

2. Multiscale Center/Surround Retinex

The SSR 1°, 12, 13 is given by

Ri(x, y) = log Ii(x, y) - log [F(x, y) * Ii(x, y)] (1)

where Ri(x, y) is the retinex output, Ii(x, y) is the image distribution in the ith color spectral band. "." denotes the

corrvolution operation, and $'(x, y) is the surround function,

Y'(x,y) = l(e '-I_%_'_1#',

where c is the Gaussian surround space constant, or the scale, and K is selected such that

/.T(x,y)dxdy = 1.

The MSR output is simply the weighted sum of the outputs of several SSRs with different scales. Mathematically,

N

RM,(x, y) = __, w.R,,,(x, y), (2)

where N is tile number of scales, R,_,(x, g) is the ith component of tile nth scale, RM,(X, g) is the ith color component

of the MSR output, and u,_ is the weight, associated with the nth scale. The immber of scales is application dependent.

However, after experimenting with one small scale and one large scale, the need for a third intermediate scale wa_s

immediately apparent ira order to produce a gracefid rendition without visible "halo" artifacts near strong edges.

Experimentation shows that assigning equal weights to the scales is adequate for most applications, although a

particular scale could be weighted more heavily if a particular feature needs to be enhanced. For instance, weighting

tile smallest scale heavily carl be used to achieve the strongest dynamic range compression but leads to ungraceful

edge artifacts and some graying of uniform color zones in the rendition.

To test whether the dynamic range compression of the MSR approaches that of human vision we use test SCENES

not just test. images, to facilitate the comparison between the processed image and direct observation. An example

(Fig. 1) illustrates the complementary strengths and weaknesses of each scale taken separately" and the strength of

the multiscale synthesis. This image is representative of a number of test scenes (Fig. 2) where for conciseness we

show only the multiscale result. The comparison of the unprocessed images to the perception of the scene produces

some striking and unexpected results. Compared to recorded images, the color and detail are far more vivid for
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Original image

250 pixels
Multiscale

Figure 1: The components of tile multiscale retinex which show their comphmlentary information conlent. Tile

smallest scale is strong on detail and dynamic range compression and weak on tonal and color rendition. The reverse

is true for the largest spatial scale. The multiscale retinex combines the strengths of each scale and mitigates tile

weaknesses of each.

direct observation not only in shadowed regions, but also in the bright zones of the scene. This suggests that human

vision is perhaps doing more than jus! strong dynamic range compression and that enhancelnents beyond the MSI{

rnay be needed t.o capture the realism of direct viewing.

A sample of image data for surfaces in both sun and shadow indicates a dynanlic range compression of :2 : 1 for

tile MSR compared to the 3:1 to 5 : 1 measured in our perceptual tests. For the SSR this value is 1.5 : 1 or less.

These levels of dynamic range compression are for outdoor scenes which have shadows of large spatial extent. The

nmch higher values of compression that occur for the human visual perception of mixed indoor/outdoor scenes are

compared to retinex perfornlance in Fig. 52 (right). The foreground orang," book on the grayscale is compressed by

approximately 5 : 1 for the MSR while compression for tile SSR is only approximately 3 : 1 both relatiw" to the bright

building facade in the background. For this case. the compression of hulnan vision is difficult to estimate since both

the color and texture of the two surfaces are quite different. Our impression is that the MSR is approaching human

vision's performance but clot quite reaching it.

The MSR performs well in t.erlns of dynamic range compression InClt its performance oct tile pathological classes of
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retinex

- t

Figure 2: Examples of test SCENES processed with t.he mult.iscale retinex prior to color restoration. While color

rendition of the left image is good, the other two are "'grayed" t.o some extent. Dynamic range compression and tonal

rendition are good for all and compare well with scene observation.

images examined in previous SSR research 1° (Fig. 3 middle row) still needs to be considered. These images represent

a variety of regional and global gray-world violations and we can not expect the MSI{ to handle t.hen_ effectively.

We provide these results as a baseline for comparison with the color restoration which is developed next. All possess

notable, and often serious, defects in color rendition. Since we want the MSR to be automatic, and the pathological

images cannot be determined a priori, we developed an additional color computation which is universally applied to

all post-retinex images to produce a general purpose computation.

3. A Color Restoration Method for the Multi-scale Retinex

The general effect of retinex processing on images with regional or global gray-worhl violations is a "graying out'"

of the image either in specific regions or globally. This desaturation of color can, in some cases, be severe (Fig. 3

middle) Therefore we can consider the desired color computation as a color restoration, which should produce good

color rendition for images with any degree of graying. More rarely, the gray-world violations can siinldy produce an

unexpected color distortion (Fig.3 top-left). Again we seek a simple computation which also hamlles these cases. In

addition we would like for the correction to preserve a reasonable degree of color constancy since that is one of the

basic motivations for the retinex. Color constancy is known t,o be imperfect in human visual perception, so some

level of illuminant color dependency is acceptable provided it is much lower than the physical spectrophotometric

variations. Ultimately this is a matter of image quality and color dependency is tolerat_le to the extent that the

visual defect is not visually too strong.
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Figure 3: Pathological "gray-world" violations are not handled well by' the multiscale retinex alone(middle row) but

are treated successfully, when color restoration is added (lower row).

Starting with the foundations of colorimetry 14, the color space is transformed using

Ii(x,y) ,i= 1, ..., N. (3)

I:(x'u) - Ej:_'=l Ij(x,y)

The color restoration function C(x,y) is then simply

C(x, y) - Ci(x, y) = f [I[(x, y)],

where f[] represents linearly or non-linearly normalized color space, and controls the saturation of the final renditions.

The MSRCR is then given by

N

R,(x, y) = C(x, y) E Wi (log[Ii(x, y)] - log[Ii(x, y) * F[x, y]). (4)
i=1

This form provides dynamic range compression, color and lightness constancy, and very good color rendition.

4. Selected Results for Diverse Test Cases

The test images presented here begin with some test scenes. We feel it is fundamental to refer the processed images

back to the direct observation of scenes. This is necessary to establish that how well the computation represents



Original

Multiscale

retinex

Figure 4: Test SCENES illustrating dynamic range compression, color and tonal rendition, and automatic exposure

correction. All processed images compare favorably with direct scene observation with the possible exception of

leftmost image which is even lighter and clearer for observation. This scene has the widest dynamic range and

suggests that even stronger dynamic range compression may be needed for this case.

a result, that is "what you would have seen if you had been there". Clearly' we catmot duplicate human vision's

peripheral vision which spans ahnost 1800 , but within the narrower angle of most linage frames we would like to

demonst rate that the computation achieves the clarity of color and detail in shadows, reasonable color constancy and

lightness and color rendition that is present, in direct observation of scenes. While we cannot yet test performance

for scenes that go beyond 8-bit dynamic ranges, these results support the utility of the processing scheme for the

enhancement of conventional b-bit color images. The test scenes are given first (Figs. 4, 5) so that we can describe

the degree t.o which the computation approaches human visual performance. All the test scene images after retinex

processing are quite "true to life" compared with direct observation. We did not carefully match camera spatial

resolution to observation so some difference in perceived detail is expected and observed. However overall color,

lightness, and detail rendering for the multiscale retinex is a good approximation t.o human visual perception.

5. Discussion

The question which now arises is: _/|lat advantages does the MSRCR possess over traditional image enhancenlent

techniques such as histogram equalization, non-linear transforms (gamma correction), and gain/offset manipulation?

Again the answer is based on experimental observation, rather than on theory. Each of the traditional techniques is

well suited for a certain class of images, where the overall contrast is poor. They almost invariably fail where the

image sinmltaneously contaiils very bright and very dark areas. They also fail to preserve the color when applied to

images where the need for enhancement is not readily observable. The MSRCR successfully overcomes both these

weaknesses of the traditional techniques. Figure 6 shows a comparison of the M SRCR wit h the traditional techniques

for two natural scenes. The first contains a typical outdoor scene which has a sharp shadow across the frame. And

the second is a good image which does not obviously need image enhancement. In both cases, the output of the

MSRCR is either better than the original or as good. The same cannot be said of the traditional techniques.

The MSRCR can be applied ex post facto on 8-bit color images t.o provide image enhancement. The only

problem arises when these images have been compressed using lossy methods. Not only does the MSRCR improve
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retinex

Figure 5: Photographic examples further illustrating graceful dynamic range compression together with tonal and

color rendition. The rightnlost image shows the processing scheme handling saturated colors quite well and not

dist,orting an image that, is quite good in its original form.
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Figure 6: A comparison of in]age enhancement techniques: (a) MSRCIR with 3 scales (b) Histogram Equalization

(c) Gamma correction, and (d) Gain/offset manipulation.



thedynamicrangeandcolor,it alsoenhancesthecompressionartifactswhichhadbeenimperceptiblebeforethe
application.Hence,theretinexisbestappliedpriorto lossyinaagecoding.OneobviousadvantagethattheMSRCR
providesforimagecompressionisitsabilityto compresswidedynamicrangesto8-bit,or less,perbandcoloroutput,
whilepreserving,andevenenhancing,thedetailsin thescene.Theoveralleffectthenisa significantreductionin
thenumberof bits(especiallyin caseswheretheoriginalcolorresolutionis higherthan8-bit/band),requiredto
transmittheoriginalwithoutasubstantiallossinspatialresolutionorcontrastquality.

Wehaveencounteredmanydigitalimagesinourtestingwhichareeitherunder-oroverexposed.Apparentlyeven
withmodernphotographicauto-exposurecontrols,exposureerrorscananddooccur.An additionalbenefitof the
MSRCRis it apparentcapabilityforexposurecorrection.Thisisespeciallybeneficialif it isperformedbeforethe
imageisrecordedeitheronfilmorondisk.

6. Conclusions

The SSR provides a good mechanism for enhancing certain aspects of images and providing dynamic range

compression. However, it is limited in its use becanse it can either provide good tonal rendition or dynamic

range COlnpression. The MSR comprised of three scales--small, intermediate, and large--overcomes this limitation

and was found to synthesize dynamic range compression, co]or constancy, and tonal rendition and produce results

which compare favorably with human visual perception except for scenes which contain violations of the gray-world

assumption. Even when the gray-world violations were not dramatic, some desaturation of color was found to

occur. The MSRCR adds a color restoration scheme which produced good color rendition even for severe gray-

world violations, but at the expense of a slight sacrifice in color constancy. While there is no firm theoretical or

mathematical basis for proving the generality of the MSRCR, we have tested it successfully on numerous diverse

scenes and hnages, including some known to contain severe gray-world violations.

7. Note to readers

Color version of the figures which appear in this paper is available upon request. Please send e-mail to

zrahman!_cs.wm.edu or us-mail to Zia-ur Rahman, Department of Computer Science, College of William & Mary,

P.O. Box 8795, Williamsburg, VA 23187-8795.
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Abstract

The performance of wavelet compression algorithms is generally judged solely as a function of the compression

ratio and the visual artifacts which are perceivable in the reconstructed image. The problem then becomes one of

obtaining the best compression with fewest visible artifacts--a very subjective measure. Our wavelet compression

algorithm uses an information theoretic analysis for the design of the compression maps. We have previously shown

that maximizing the information for a given visual communication channel also maximizes the visual quality of the

restored image. We utilize this to design quantization maps which maximize information for a given compression

ratio. Hence we are able to design quantization maps which maximize the restorability of an image--i.e, the

information content, the image quality, and the mean-square difference fidelity--for a given compression ratio.

KEY WORDS: Image restoration, image compression, image quality

1. Introduction

Image compression algorithms are generally evaluated in terms of the amount of data compression, a measurable

quantity, and the visual quality for this data rate, a subjective quantity. Neglected in the design of compression

algorithms and the evaluation process are the effects oil the data rate and the quality of the image due to the

image acquisition and display systems. Some effort has been made to relate the effects of display into evaluation

of image quality 1 but nolle in incorporating the characteristics of the image gathering system into the design of the

compression algorithm. We present a new approach to designing and evaluating image compression algorithms in

terms of the information transmitted by the visual communication channel. This approach incorporates the effects

of the image gathering device characterized by the signal to noise ratio and the spatial frequency response (SFR) of

the combined optics and photodetector array, the quantization due to the analog-to-digital (A/D) converter, and the

errors due to the compression process into the design of the quantization maps. These maps are related to visual

quality by the amount of information they allow through. Previously, 2-6 we have combined Shannon's information

theory 7 with Wiener's restoration filter s and with the critical limiting factors that. affect a visual communication

channel to provide rigorous quantitative metrics for characterizing its design and evaluating its performance in terms

of restorability. We now integrate lossy data compression into this framework to optimize data rates 9 and evaluate

its effects on image resolution, and hence, quality.

Figure 1 shows the visual communication channel. At the head of the communication channel is an image-

gathering device which consists of a lens, a photodetector array, and an analog-to-digital (A/D) converter. This

device converts the radiance field incident on it into a quantized, digital signal which is then transmitted. At the

tail of the channel is a receiver which resolves the signal and provides the information to an image display device

(e.g. video monitor, or a printer) which, in turn, represents this information in a form suitable for interpretation by

an observer. Between the output of the A/D converter and the receiver, any number of digital image processing

algorithms can be applied for image enhancement and efficient data representation and transmission. Traditional

analysis of image compression and restoration algorithm is generally restricted t.o this stage only, neglecting the

analog-to-digital conversion at image acquisition and digital-to-analog conversion at image display. This leads to an

inherently incomplete model which results in restorations and compression rates which could have been better if the

conversions at acquisition and display had been properly taken into account.

The imaging process injects errors in the original information that is incident on the image gathering device.

The combined SFR of the lens and the photosensor array blurs the radiance field; the photosensor array and the

tThis research was funded by NASA Langley Research Contract #NAS1-19603 to Science and Technology Corporation and by NASA

Langley Research Grant 7_NAGl-1847 to the College of William & Mary.
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Figure 1: The visual communication channel

A/D converter introduce electronic and quantization noise respectively; and the SFR of the display spot of the

image-display device blurs the resolved signal. These errors result in a reduction in the amount of information

that is received by the observer when compared with the information which was present at tile beginning of the

imaging process. Since for a lot of applications (e.g. remote sensing) the only information tile observer has is this

received information, it is advantageous to minimize the channel effects so as to maximize information. A rigorous

mathematical analysis provides the framework to evaluate the performance of the communication channel and can

thus be used to informationally optimize its design in terms of both resolution (restoration) and compression. We feel

that this is essential in designing a channel which provides the most information, and hence the highest resolution,

for the least data.

2. Mathematics of the visual communication channel

The visual communication channel is divided into five stages: image-gathering, decomposition, quantization,

synthesis, and restoration. Though we present the mathematics of each stage individually, each stage builds on the

preceding stages and the restoration filters depend upon the end-to-end process.

2.1. Image gathering

The image gathering device converts the incident continuous radiance field L(x, y) into the discrete signal s(x, y)

(Figure 2). The combined SFR of the device optics and photosensor array aperture, rd(X, y), blurs the input L(x, y),

which is sampled by the rectangular unit sampling lattice, ][[(x, y), and corrupted by the additive noise due to the

analog-to-digital (A/D) conversion, N_/d(X, y), and the electronics, N_(x, y), producing

,(x, y) = [l,L(x, v) * _a(_, y)] Ill+ .%(,=,y) + :q/d(_, Y), (la)

Ta(x, v) Ill(_,v)

N_(x, v)

Figure 2: Image gathering: The radiance field L(x, y) is converted to signal s(x, y).



where K is the steady-state linear radiance-to-signal conversion gain.

]]._J= Z_ .... _ 6(x - m, y - n). Rewriting in Fourier domain,

The unit. sampling lattice is given by'

(lb)

where tile notation /)(t,,_) refers to the continuous Fourier transform of a function p(x,y) and _(v,_) refers to

the discrete Fourier transform of a function q(x, y). The Fourier transform of the sampling lattice ]]] is given by'

[i_]= Y2C_,n=-o_ 6(v- rn, oa - n), with tile associated sampling passband B = {v,w: ]el, [u,[ _< 0.5}. The probability

density function of the noise N_/d(X, y) can be written as

/-_ tg

p[,¥a/_(x, u)] = sp... (., v) - _,. (*, v) = gg:_.,' (2)

for se=.. = kcr, and se=.. = -ke, which specify the range of tile signal; n is tile number of quant.ization levels of

the A/D converter; and e_ = ff,? _,(t,,w)dt,dos. The power spectral density (PSD) of the signal _,,(t,,w) prior to

quantization is

_,(_,,_) = E[_(_,,_)._'(_,,_)] (a)

= h "(PL(v, -J)lrd(v, _)l" * Iil+ _._,(<_),

where E[] is the expectation operator, and " indicates complex conjugation. Assuming that the error within each

quantization interval is uncorrelated with errors within other intervals,

9

2.2. Decomposition

Figure 3 shows signal decomposition, and synthesis and restoration.

parts, at L levels using the discrete wavelet transform.

(4)

The signal s(x, y) is decomposed into N

a0,1(t',_) - a(t,,aa) {6a)

X-1 Y-1 n

= _=0( y,w - V)" The signals .:q.j occupy'where the ÷a,.,(v,w) are, generally', orthogonal, and [i_l_ _,n=0 t,- "

different, frequency bands. Each signal can possess quite different characteristics and hence be amenable to different

methods and rates of quantization. This provides a versatile method for efficient signal representation.

Equations 5 show the relationship between the signal s(z, 11) and the decomposed signals s&2(,, !1) in terms of

the wavelet analysis filters and the downsampler. More explicitly, using Equations 1,

._l,_,(__? _.)) _-- [I£L(_, _)7"d(I, _I.1)7"AI,O([J,_..))] :@ liy'-Ju [.t'Te(t,,_4.2)TA,._('[,,_) "-1L ._/d(_fl,M.))7"Al._(I_',{.J)] * ]iylu, (7by

bandwidth.

so,l(z,v) - s(z,11) (Sa)

su(x,11) = [st_a,a{x,11), Ta,,,(x,y)] I1_1_, _ = 1 ...... ,Y, l = 1 .... L, (Sb)

where st-l,l(x, y) is the "low frequency" band from the previous level, rA_,_(x, y) are the wavelet analysis filters at

the current, level and [[-_]u= XY Zm_ .... Z'____oo (5(X -- reX,11-- nY) is tile downsampler by X = Y = _. in

the frequency" domain this can be seen as dividing the passband into N segments each occupying 1/Nth the original
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Figure 3: Wavelet decomposition, quantization, and restoration

where _1i1'= Em,_ ¢S(,, - _, _ - _,), is the combination of the uniform rectangular sampling lattice of the inaage-

gathering device and the downsampler. It has sampling intervals of (X, Y) and associated passband Bt( v, _) = { v, _' :

I_'1,I_I < 2-(z+_/} -

2.3. Quantization

The wavelet coefficients are quantized in the spatial-frequency domain. Each coefficient, _l,_(v,_) contains a

measurable amount of information "H_,_(t,, _) (§3). McCormick 1° et al., and Huck 4, 11 have shown that maximizing

information leads to maximizing the image quality. Hence the coefficients are quantized under the constraint of

maximizing total information for the number of bits used to represent the signal. The quantization transforms the

wavelet coefficient, sz,3 (t', _) into a representat ion Q[_I,_( t,, _)]. The inverse process transforms the Q[Q,_ (t', _')] back

t.o the coefficients plus, perhaps a noise term.

sl,3(v,_) _l,_3(t',_) + Y¢Q,,,(_',_), d = 2, -V (8a)
aN:

;J= 1

where -'
Sl,_(t ,_) dequantized representsthe coefficients, and _;0,._(t,,,_') the "noise" due to the quantiza-are

tion/dequantization process. The initial conditions are given by



Assuminguniformquantizationforeachwaveletcoefficientbetweentherange±kal,;_(t,,w)wecanwritethePSD of

the coefficient quantization noise as

- o 1 2
'E% _(_',,_)= _,,_,,,(_,_): _ \ ,_t,_(_,,_) / ' (9)

where at._(t,,w) are the ensemble standard deviations for the coefficient at frequency (v,w) ill band ;3 and level l,

and n_j(v,w) is the number of quantization levels for that frequency location.

2.4. Synthesis

The synthesis filters reconstruct the decomposed signals. When the coefficients are not quantized, this can be

done perfectly. 12, 13, 14 With loss), quantization, however, the synthesis filters are generated to minimize the minimum

mean square error (MSRE) e2(t,,w) between the decomposed and reconstructed signal. The MSRE is given by

P(.,_) : E [h_,,,(,,,_) - _',,(_,-)1_],

._l.l(t',w) is the input and ._' (t,,w) is the output to level 1 + 1 Using Equations 6 and 8,1,1

_,q,. 1 ( U, ".d )_A,+,. _ ( l', ¢z )

where _s,,_(t,,_) is the PSD of ,Sl,l(t',,_), and _NQ,+_.o (t,,,_) is the PSD of the quantization noise in band 1+ 1

_/'s,._(v,_) can be defined by' a set of iterative equations

] -l_} S'O, 1 ( '[ ', M,_' ) : Ii'_L(t',_Z)[7-d(V,,Z)l 2 ,I]l+oP,,_,o/e(t,,_z)-l-_xo(t,,,z)

[ ]_So,_(_',_)lh,,_( _',_)12 rI ih_,, (_,,,_)12 • i]1,,
k=l

(10)

The

lla)

llb)

(llc)

.,here Ill, = E._=-_ E.%-_ _(_'- ,./X' _,- ,,/r').

2.5. Restoration

The Wiener-matrix restoration filters _Z(t,,_¢) 6' 15

continuous image T¢ given by
N

_(_',_) _ "-1^ _,= I_. kI//3 (U aJ) Sl,2 (lh a./)

_=1

where

synthesize the N level-1 outputs ._'l,;j(t,,w) into a single

(12)

N

_._(t,, _,')= _L{v,_)_'S(t,,_)Z r_,.o (t,,_)[T-'(t,,_)] _ , (13)
o=1

SL(t',w),$No(t',_), $%/,(v,w) and _PN_,_(V,_) represent the PSD of the radiance field, the photodetector

noise, the A/D quantization noise, and the level-1 quantization noise respectively. When "ra_._(v,_)f%.o (t,,_') =

]_A,._(t,,_)]'_6('3, a), the Wiener matrix filter reduces to

• _{t,,_) = _ dPL{t'_s)ra(v'_)raL_{_"_'}_ . (15)



Theformulationof theWiener-matrixfilter takesintoaccountthedegradationsdueto notonlytheblurringand
noisel6,17butalsodueto insufficientsampling,theanalysisfilterresponse,andquantization.It alsosuppressesthe
blurringandrastereffectsin imagedisplayby interpolatingtheimage-gatheringlatticeonanat least4 timesfiner
image-displaylattice.

3. Information

The information rate, _, is used to evaluate the performance of the visual communication channel. The

only information the observer has about the incident radiance field is that contained in the restored image. The

degradations due to aliasing and various noise sources appear as artifacts. The information at each level in each

decomposed band 7-/t,0 is

7"ll,O = "Hl,n(t,,w)dt,dw = _ log 2 1 + _ _ dt,d,o. (16)
, , @s,-,.,(v, w)l_A,.e(v, _')1_ * _ + q'O,_,., (t,,._)

where l]_a = _-_,_=0x-1_==0Y-16(v- _-,mw - _),m = n # 0, are the sidebands of the down sampler, and tile PSDs

_s,., (t,,,z) are given by Equation 11. Tile total information for the visual communication channel is

L-IN N

1=1 /3=2 13=1

4. Quantization Algorithm

Based on Equation 16(a) which provides the amount of information each wavelet coefficient contributes to the

total information, a quantization scheme can be devised which either maximizes the total information for a given

number of bits, or minimizes the total number of bits given an acceptable level of information loss. The scheme is

as follows:

1. Quantize all the coefficients at the maximum rate.

2. For each coefficient, determine the loss in total information when the quantization rate for the coefficient, is

reduced by 1 bit.

3. For the coefficient, which least affects the total information, reduce the quantization rate by 1 bit.

4. Iterate this process until either the total number of bits is exhausted, or the acceptable information loss has

been achieved.

Because the power spectral density used in developing these quantization measure is not the actual PSD of the signal,

but instead a statistical quantity, the quantization tables thus obtained can be used for a wide range of input scenes,

producing excellent results for input radiance fields which closely match the assumed radiance files PSD and good

results for others.

5. Simulation Assumptions

Since it is virtually impossible to successfully estimate all the parameters of an image-gathering device from

the received signal, we use simulated imagery to test our algorilhm. This allows to closely control the system

characteristics which affect image quality and compression and observe their effects in a controlled environment.

We use targets made of randomly generated polygons whose mean spatial detail--the average distance between

edges--p, is Poisson distributed and intensity levels are Gaussian distributed with standard deviation aL. The targets

with mean spatial details p = 1 and 3 are shown in Figure 4. The associated radiance field L(x,y) is stationary'

and Gaussian. We assume that. both the electronic noise Ne(x, y), and the A/D quantization noise N_/_(x, y), are



Figure4: Randompolygontargets:(a)p = 1 (b) p = 3

Design

1

2

3

0.3 256

0.4 64

0.5 16

4.4

3.3

2.1

Table 1: Informationally optimized visual communication channel designs.

uncorrelated with the radiance field L(z, y). In addition, we model the SFR of the image gathering device with a

[_(_)2], where p = v 2 + x2, and the electro-optical design index Pc, which controls theGaussian, 4"d( V , a_) exp

width of the response, and hence the tradeoff between aliasing and blurring, is the point where 4-a(v, _) = 1/e _ 0.37.
t. A

When Pc is large there is more aliasing and when it is low, there is more blurring. The restoration filters qJ_ are

generated at at least 4 times finer density than the sampling lattice to suppress the raster effects of the display

device 10.

6. Results

In order to design optimally efficient visual communication channels, i.e. channels which transmit the most

information for the least data, it is first, necessary to look at optimal visual communication channels, i.e channels

which transmit the most information given a certain image-gathering device.

Visual communication channels, rather simplistically, are generally characterized only by the signal-to-noise ratio

(SNR),* and the SFR of the combined electro-optics. Huck et al. a, 4, 11 have studied the problem of designing visual

communication channels for maximum information throughput in detail. Table 1 specifies three visual communication

channel designs, in terms of the SNR and the electro-optical design index Pc, that have been informationally optimized.

The amount of information each of these designs transmits is also given. \Ve will introduce lossy wavelet compression

as an additional constraint on these communication channels and design quantization maps which maximize the

information throughput for a given bit rate, or minimize the bit rate for a give acceptable amount of information

loss.

The overall effect of lossy quantization on the transmitted signal is the introduction of an additional noise source

:_?Q_,_(v, a_) (Equations 13-16) which affects the visual quality of the reconstructed image. If the quantization maps

are carefully designed, these effects can be minimized. Figure 5 shows quantization maps developed using the

"By this we mean the SNRof the electronic device used for image gathering. We will not consider the effects of channel noise on the
integrity of transmission.



Figure5: Quantizationmapsdesignedwith a 5%acceptablelossill informationfor (a) Design3 (b) Design1
(Table1).

algorithmgivenin Section4 for Designs1and3specifiedinTable1. Thetotal acceptablelossin informationfor
thesemapsis nomorethan5%.Theprioritywithwhichbitsareencodedin eachbandis clearlyevidentin the
quantizationmaps.Mostof tile coefficientsin the lowestfrequencybandscontainhighinformationsotheyare
retainedin preferencet,othecoefficientsin thehigherfrequencybandswhichcontainlessinformation.Becausethe
bit allocationalgorithm(§3)reducestile numberof bits for tile coefficientbasedupontheamountof information
7-/(t,,,a)it contains,the initial reductionin thenumberof bitsdoesnot havea significantimpactuponthetotal
information.However,asmoreandmorebitsarediscarded,the informationcontentof theaffectedcoefficients
Ishigher,andtherateof informationreductionincreases.It isalsointerestingto lookat thereductionin total
informationasafimctionofthereductionin thenumberofbitsineachband.Theinformationcontentofcoefficients
m band4 isverylow,hencethenumberofbitscanbereducedbyabout15c){beforeanyimpactisfelt onthetotal
information;coefficientsinbands2and3 havehigherinformationcontentandhavemoreof animpactonthetotal
reformation;andthecoefficientsin band1havethehighestinformationcontentasisevidentbythesharpreduction
in7-/asthetotalnumberofbitsforband1decreases.

A secondpointofinterestisthetheeffecton7-Iasafunctionofthechannelcharacteristics.Thetotalinformation
for all designsisa monotonicallyincreasingfunctionof thetotalnumberofbitsbeingusedto representthesignal.
Therateof increase,however,issmallerat lowervaluesoftheSNR.Thus,foragivennumberof bits,thereductiou
in informationperbit isgenerallyhighestforDesign1,andthelowestfor Design3whichsuggeststhatgreaterdata
compressioncanbeachievedfor channelsthat havelowerSNRssincethequantizationeffectswill notoverwhelm
whatisalreadyanoisysignal.

Figure6(b)showsthedecomposedimagesofthetargetsshownin Figure4, andFigure6(c)showstherestored
images.Theresultsareshownforanacceptablelosslevelof5c2_=.Therestorationsshowsomeobviousartifacts,more
soin tile p = 3 image than in the tl = 1 image. This is because the aliasing artifacts and colored noise are. to a

certain extent, masked by the detail in the scene. Conversely, one sees loss of detail in the mu = 1 scene due to

the loss of high-frequency information in the quautization process. These results point to tile necessity of developing

better filter banks for the restoration of images.

7. Conclusions

We have presented an integrated treatment of designing quantization maps for a given visual communication

channel based upon the metric of maximizing information. Since the design of a compression algorithm should



Figure6: (a) Theblurredandnoisysignals(outputof tile imagegatheringstage).(b) thedecomposedsignals
(outputof the wavelet, decomposition stage) at L = 3, and (c) The expected restored images. Results are shown for

restoration done from level-1 components. Tile original scenes are shown in Figure 4.

maximize visual quality in addition to tile compression ratio, it. is imperative that. an end-to-end syst.em analysis be

used in both the design of the compression algorithms and in the design of the evaluation process. Though some

work has been done on incorporating the effects of image display on the perceived inaage quality 1, our development is

unique m the sense that it. incorporates the effects of the image gathering process into the design of the compression

algorithm.

Though the algorithm outlined here is simple conceptually, it is computationally intensive and for that reason the

results presented here are for the simplest case where the analysis filters are orthogonal. This reduces the number of

computations significantly but at. the same time provides good insight into the results which can be expected from

this approach. But. this also does not fully achieve the image quality that. is expected of this algorithm. Current

research is looking at improving the analysis/synthesis filters, as well as improving the robustness of the restoration

filters. This will lead to both better image quality in terms of human perception, but also restorability in t.erms of

the amount of detail resolved in the displayed images, and improved compression ratios.
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ABSTRACT

This paper dealswith the extensionofinformation

theory to the assessment of visual communication from

scene to observer. The mathematical development rig-

orously unites the electro-optical design of image gath-

ering and display devices with the digital processing
algorithms for image coding and restoration. Results
show that:

• End-to-end system analysis closely correlates with
measurable and perceptual performance characteristics,

such as data rate and image quality, respectively.

• The goal of producing the best possible image

at the lowest data rate can be realized only if (a)

the electro-optical design of the image-gathering de-
vice is optimized for the maximum-realizable infor-

mation rate and (b) the image-restoration algorithm

properly accounts for the perturbations in the visual
conmmnication channel.

1. INTRODUCTION

Modern visual communication channels increasingly

combine image gathering and display with digital image

coding and restoration (Fig. 1). So far, however, the

image-gathering devices are still designed to produce

the best possible images when reconstructed without
the aid of the digital processing, and the image cod-

ing and restoration algorithms are still developed and

evaluated without fully accounting for the critical con-

straints of image gathering and display.
The aim of this paper is to summarize some ele-

ments of a study [1,2] that rigorously unites the electro-
optical design of image gathering and display devices

with the digital processing algorithms for image coding
and restoration. The study is based on the two classical
works that are the foundation of modern communica-

tion theory. In one work Shannon [3] introduces the

concept, of the rate of transmission of information in a
noisy channel, and in the other Wiener [4] introduces

the concept, of the nfinimum mean-square error restora-

tion of signals corrupted by noise.
Although our mathematical development is firmly

rooted in these familiar concepts, it leads to formula-

tions that are significantly different from those that are
found in the traditional literature on either rate distor-

tion theory or digital image processing. These differ-

ences arise mainly because of two critical factors that
this literature has not addressed so far. namely:

Information Image Gathering
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Spatial frequency
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Figure 1. Model of visual communication channel together with the critical limiting factors that constrain its performance.



1. Thelimitationsinherentill therealizabilit.yofthe
spatialfrequencyresponse(SFR)of opticalapertures
andthesamplingpassbandof photodetectionmecha-
nismsimposeatrade-offbetweenblurringandaliasing
on thedesignof the image-gatheringdevice(Fig.2).
Thisprecludesthetreatmentof visualcomnmnication
asabandwidth-limitedprocess,but,instead,it requires
theinclusionof theeffectsof insufficient,sampling.

2. The image-gatheringprocessbarstheencoder
fromunperturbedaccessto thescene(i.e.,theoriginal
source).Thisprecludestheapplicationof information
theorydirectlyto the scenefor the analysisof data
compressionandratedistortion.Instead,this theory
nowmustaccountfortheperturbationsthat.theimage-
gatheringprocesscauses,namely,the photodetector
andquantizationnoisesas wellasthe blurringand
aliasing.

2. IMAGE GATHERING AND

RESTORATION

Tile in]age-gathering process transforms the continuous

radiance field L(x, y) that is either reflected or emitted

by tile scene into the digital signal s(x,y;g), and the

image-restoration process transforms this signal into the
observed image R(a', y; _). In the Fourier domain, the

image-gathering process is defined as

_(t,,_s; K) -- [I,2L(v,,,,)r(t,,_s)]. Ill + _p(t,,_)

+ _q(v,_; K), (1)

where L(v,_') is the continuous radiance-field trans-

form, r(t,,._') is the SFR of the image-gathering device,

/,p(v,_') and /_q(t,,_'; n) are the discrete photodetector
and quantization noise transforms, and (t,,,_) are the

spatial frequencies with units of cycles per sample. The
tilde "-" is used instead of the caret ". " whenever the

Fourier transformation is discrete and, therefore, the

transformed function is periodic in the spatial frequency

domain. The function 111is the Fourier transform of the

sampling lattice, as given by

?I_,D

where 6(t,,_') is the Dirac delta function and Iil, ac-
counts for the sampling sidebands. The assoTiated

salnpling passband

[ 1 _]B = (_,,,_,); I_'l < _, I_'l <

^

_..---]B

\\ '"" ! 03
0.8 • ". I

\_ _ ".1 0.4
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Figure 2. SFRs _('u,m) of the image-gathering device relative
to the sampling passband B for unit sampling intervals.

has unit area, i.e., J/31 = 1. The analog-to-digital trans-

formation is done for n levels with 7j-bit. quantization,

where 7/ = log _ and log denotes logarithm to base 2.

The corresponding image-restoration process is defined
as

R(,,,_;,_) = l,-_[_(=,.,j;,_)q,(,.._.;,_)+ :'(,.(,,,_)], (2)

where tP(v,w;_) is a linear filter that records the dig-

itally processed signal on an interpolation lattice that
is sufficiently fine to suppress the blurring and raster

effects of the image-display process and ./Vr(t',_') is

the transform of the reconstruction noise (e.g., film

granularity).
To assess visual conmmnication in terms of informa-

tion theory, the image-gathering process is constrained

to be linear and isoplanatic (spatially invariant), and

the radiance-field and noise amplitudes are constrained
t.o be Gaussian, wide-sense stationary, and statistically

independent. In addition, we characterize: (a) the radi-

ance field L(z,V) by the power spectral density (PSD)

1

of an isoplanatism patch of t.he scene with area IAI,
(b) the discrete signal s(L 9) prior to quantization by
the PSD

= 115+ (a)

(c) the photodetector noise nl,(z, 9) by' the PSD _p(],, _),

and (d) the quantization noise nq(.r, Y; K) by the PSD

_p(t,,._';K) = (___._)2 (4)



where

,G = ff 4, (_,,_)
.J J

dl! d_a.,,.

3. FIGURES OF MERIT

By accounting for the critical constraints of image gath-

ering, we can quantitatively assess visual communica-

tion in terms of the following figures of merit:
1. The rate of transmission of information, or infor-

marion rate, _ that the image-gathering system pro-
duces for the radiance field that resides within its field

of view, as given by

1 // [ _,(v,_o)[r(v,w)l 2"7/=_ log 1+ (i),,(t,, _; _)
R

d,_,d_, (5)

where

_,,(¢',-_; _) = _, (_',_)1_-(_',_)1_ * I[1_+ I_-214v(_',_)

+ (_q(_',_; _)].

2. The theoretical minimum data rate tT. which is asso-

ciat.ed with the informatiol_ rate ?g, as given l)y

g = _ log 1 + _)q(V,w;n)] dvd_.. (6)
B

This expression for E represents the entropy of com-

pletely decorrelated data.
3. The nmxinmm-realizable fidelity .T of the digital

image that can be restored from the received informa-

tion, unconstrained by' the image-display medium, as

given by

:v

.T=_:2 //_(,,, ,)[1-2 -_('''_')]dvd_a,
-x

(7)

where ?-/(v,,,,) is the spectral distribution of the infor-

ination rate 7g given by' the integrand of Eq. (5).

Reference 2 fills in the many details. It also for-
mulates the information rate "Ho and the maximum-

realizable fidelity .To of the observed image that the

image-restoration system produces from the received

information on an image-display medium (e.g., fihn).
In addition, it. accounts for nmltiresolution decomposi-

tion (wavelet transform) to optimally integrate the eco-

nomical encoding of the transmitted signal with image

gathering and restoration. Finally, Ref. 5 applies the

information-tlleoretic assessment to the electro-optical

design of the image-gathering device. It accounts for (a)
the f-number, diffraction, and transmittance shading of

the objective lens, (by the sensitivity, aperture shape,

and sampling geometry of the photodetection mecha-

nism, and (c) the dynamic-range compression with lat-
eral inhibition in the focal plane.

Figure 3 characterizes the information rate "H as

a function of the electro-optical design of the image-

gathering device, as specified by the optical-design in-

dex p_ and the rms signal-to-noise ratio (SNR). The

curves show that the preferred SFR is a function of

the SNR. This result is intuitively appealing for im-

age restoration. In one extreme, when the SNR is low,

one would prefer to avoid substantial I)lurring because
the noise constrains the enhancement of fine spatial de-

tail. In the other extreme, when the SNR is high, one

would prefer to avoid substantial aliasing because then

the noise no longer contrains this enhancement.

Figure 4 presents an information-entropy _(g.) plot
that characterizes the information rate _ versus the

associated theoretical minimuln data rate g. for q-bit

quantization and three informationaUy optimized de-

signs of the image-gathering device. This plot serves
as a useful alternative to the familiar rate-distortion

function, which is based on the premise that the encoder

has unperturbed access to the original source and,

therefore, directly controls the trade-off between dis-
tortion and data rate. The curves show that the

electro-optical design that increases "H also decreases
the associated g and, thereby', substantially improves

the information efficiency ?-l/g of the data trausmission.
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Figure 3. Information rate _ versusoptical-design index Pc
for several SNRs.
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Figure 4. The information-entropy .,"4"(E)plot that charac-

terizes the information rate H versus the associated

theoretical minimum data rate E for q-bit quantization.

The three curves represent informationally optimized

designs specified by the optical-design index Pc and SNR.

Figure 5 presents images that illustrate the transi-

tion from traditional telephotography and television in

which images are reproduced without digital process-

ing to modern visual communication systems in which

images are reproduced with digital restoration.

4. CONCLUSION

The image-gathering device that, is designed to

produce the maximum-realizable information rate or-

dinarily maximizes (a) the effictency of the information

transmission (i.e., the ratio of the information rate ?-I to

the theoretical mininmm data rate E), (b) the quality

of the image restoration (i.e., the restorability of ina-

ages for fidelity, resolution, sharpness, and clarity), and

(c) the robustness of the image restoration (i.e., the tol-

erance of the restoration to errors in estimates of the

radiance-field statistics). This critical dependence of

the efficiency, quality, and robustness of visual commu-

nication on the design of the image-gathering device is

largely independent of the statistical properties of nat-

ural scenes.
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ABSTRACT

The retinex is a human perception-based image pro-

cessing algorithm which provides color constancy and
dynamic range compression. We have previously re-

ported on a single-scale retinex (SSR) and shown that it

can either achieve color/lightness rendition or dynamic

range compression, but not. both sinmltaneously. We
now present a nmlti-scale retinex (MSR) which over-
comes this limitation for most scenes. Both color ren-

dition and dynamic range compression are successfully

accomplished except for some "pathological" scenes

that have very strong spectral characteristics in a single
band.

1. INTRODUCTION

A common problem with color imagery--digital or

analog--is that of successful capture of the dynamic

range and colors seen through the viewfinder onto the

acquired image. More often than not, this image is a

poor rendition of the actual observed scene. In 1986,
Edwin Land presented the last version of his retinex[1]

as a model for human color constancy. Hurlbert[2, 3]
showed that. there is no mathematical solution to the

problem of removing lighting variations. Moore[4, 5]
implemented a version of the retinex in analog VLSI for

real-tram dynamic range compression but. encountered

scene context, dependent limitations and hence failed to

achieve a generalized implementation. More recently

we, inspired by the work of Land, Hurlbert, and Moore
decided to delve into this commonly occurring, but

surprisingly intractable, problem. Our initial research
resulted in the single-scale retinex (SSR) that we have

described in detail previously[6, 7, 8]. The SSR shows

exceptional promise for dynamic range compression

but. does not provide good tonal rendition. In fact, a

distinct trade-off controlled by' the scale of the surround

function exists between dynamic range compression

This work was performed under a NASA Langley Research
Center Contract #NAS1-19603

and tonal rendition, and one can be improved only' at

the cost of reducing the other.

This paper describes our initial research in allevi-

ating some of these trade-offs by using a muhi-scale

retinex (MSR), i.e. a retinex which combines several

SSR outputs to produce a single output image which

has both good dynamic range compression and color

constancy, and good tonal rendition. The tonal rendi-
tion, though, is still scene dependent to a certain ex-

tent. We will briefly describe the MSR in Section 2. In
section 3 we will provide some of the results of apply-

ing the MSR to color images and compare our results
with other techniques for image enhancement. Finally,
in Section 4 we will discuss the future direction for this
research.

2. THE MULTI-SCALE RETINEX

The MSR can be compactly written as

N

F,(x, y) = _ tt'_.
rl=l

{log [Si(x, y)] - log [Si(x, y) * M,_(x, y)]} (1)

where the subscripts i E R,G, B represent the three
color bands, N is the number of scales being used,

and _% are the weighting factors for the scales, The
M,,(x, y) are the surround functions given by

_t,,(x, v) = _,_ exp[-(_ -_+ v_ )/"_],

where the O'n are the standard deviations of the Gaus-

sian distribution that. determine the scale. The mag-

nitude of the scale determines the type of information

that the retinex provides: smaller scales providing more

dynamic range compression, and larger scales provid-

ing more color constancy. The Kn are selected so that

ff F(x, y) dx dy = 1. Each of the expressions within the

summation in Eq. 1 represents an SSR.

The SSR has been previously defined[6] to have the

following characteristics and properties:



1.Thefunctionalformof thesurroundisa Gaus-
sian.

,

4,

The placement of tile log function is AFTER sur-
round formation.

The post-retinex signal processing is a "canon-

teal" gain-offset rather than all automatic gain-
offset,.

There is a trade-off between dynamic range com-

pression and tonal rendition which is governed by

the Gaussian surround space constant. A space

constant of 80 pixels was a reasonable compro-

mise between dynamic range compression and
rendition.

A single scale seenled incapable of simultaneously

providing sufficient dynamic range compression
and tonal rendition.

Violations of the gray-world assumption led to

retinexed images which were either "grayed-out"

locally or globally or, more rarely, suffered from
color distortion.

The MSR combines the dynamic range compression
of the small scale retinex with the tonal rendition of

the large scale retinex to produce an outpul which

encompasses both.

As slated above, the MSR still suffers from graying-
om of uniform zones much as the SSR did. The advan-

tage that the .MSR has over the SSR is ill the con>

bination of scales which provide both dynamic range

compression and tonal rendition at the same time. The

overall result, of the applicalion of the MSR is still more
saturated than human observation, giving the final im-

age a "washed-out" appearance, but it preserves most

of the detail in the scene. This "graying" of areas
of constant intensity occurs because the retinex pro-

cessing enhances each color band as a function of its
surround. The smaller values in the weaker channels

get "pushed" up strongly, making them approximately

equal in magnitude to the dominant channel, leading

to a graying out of the overall region. Moore[4] en-

countered this problem in his implementation of the
retinex and attempted to resolve it with using variable

gains across the color channels. We do not attempt a
solution in this paper but provide a detailed solution

elsewhere.[9] ttowever, the MSR produces a much bet-
ter final image in terms of color, and dynamic range

than the SSR. Figure 1 shows a comparison of the SSR

and the MSR processing. The differences are easier t.o

see in the original color images (see CD-ROM version

of paper), but. if one looks around the left side of the

11

Figure 1: (a) Original (b) Single-scale Retinex (c)
Multi-scale Retinex



faceandin the areajust abovetherightshoulderof
thepicturedman,oneseesdetailsfor theMSRwhich
arenotevidentin theSSR.Alsothe"haloing"artifacts
peculiarto theSSRareeliminatedin theMSR.

3. RESULTS

Figure 3 shows a comparison of the MSR with image
enhancement methods typically used for dynamic range

compression. The scenes are selected to show the ef-

fects of MSR processing on "good images" (top row),

wide dynamic range compression that is achieved by

the MSR (middle row), and color constancy (bottom

row). Histogram equalization performs well for tile

child image, but begins to saturate in both the grass im-

age and the cave image. The logarithmic non-linearity
has the poorest performance for all three scenes, though

its dynamic range compression capabilities are quite ev-

ident in the grass scene. For the MSR processing, the

uniform regions in tile child scene tend to gray out,

but the overall result is still quite good. For tile grassy
field, tile MSR processing compresses the wide dynamic

range well and brings out the colors in both the bright

and the clark areas very' well. For the cave image, the
color of tile inside rock, and the outside rock forma-

tions are both brought out so they agree with actual

observation. The CD-ROM version of the proceedings

contains the color postscript figures and the compar-
isons are nmch easier to make.

The MSR output brings out most of the detail in the

black regions but at the cost of enhancing the noise in

these regions. This noise is a result of the poor signal-
to-noise ratio in these areas. The traditional techniques

are also able to enhance the dark regions, but not to
the same extent as the MSR. In fact, the MSR achieves

a balance between enhancing the darks, yet, at the

same time, retaining the colors in the bright regions,

as opposed to traditional point non-linearities which
tend to enhance the darks at the cost of saturating the

brights (Figs. 3(b,c)). Of course, the final rendition in

still scene-dependent and can often be grayed-out if the

original scene contains large areas of constant intensity

(Fig. 3(d)(top row)).

The MSR output is different from existing tech-

niques in that the overall effect of processing is scene

dependent but the processing itself is not. In other

words, though the overall effect adapts itself to the

lighting variations within the scene, the same process,

with exactly the same control parameters can be used

for any image. This is not true for other adaptive tech-

niques since variations in lighting conditions imply vari-

ations in tile control parameters.

4. FUTURE RESEARCH

The main direction of further research is to improve

the color rendition of the MSR. Though it produces

excellent dy'namic range compression, the tonal rendi-

tion is scene dependent and can be quite poor. Work

is already underway on a newer version of the MSR

which combines a post-filter with the MSR to produce

an MSR which provides very good color rendition with

a very slight loss in overall dynamic range compression.
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Abstract

Recorded color images differ from direct human viewing by the lack of dynamic range compression and color constancy.

Research is summarized which develops the center/surround retinex concept originated by Edwin Land through a single-

scale design to a multi-scale design with color restoration (MSRCR). The MSRCR synthesizes dynamic range

compression, color constancy, and color rendition and, thereby, approaches fidelity to direct observation.

Introduction

A comparison of the recorded color image and the "view through the viewfinder" are strikingly different (Fig. 1) for most

everyday scenes due to the presence of shadows. Color and detail in shadows are far more clear in the direct view than in

recorded images. We have developed Land's concept of a center/surround retinex t to the level of single-scale retinex

(SSR) design for which there is a trade-off between dynamic range compression and tonal rendition that is governed by

the choice of the surround space constant. Comparison of processed images to direct scene viewing established that no

value of an intermediate space constant could simultaneously provide sufficient dynamic range compression and good

tonal rendition. The single-scale retinex provided a building block for the construction of a multi-scale retinex which

does couple acceptable dynamic range compression with good tonal rendition. Color constancy is excellent for all forms

of the retinex but color rendition was elusive as a result of the gray world assumption implicit to the retinex computation.

A color restoration was developed and applied after the multiscale retinex in order to overcome this color loss but with a

modest dilution in color constancy.

Ra¢o¢cl6_1 Observed

Figure 1. The discrepancy between recorded images and direct
observation. Human vision strongly compresses visual information across

wide-ranging illumination conditions within a scene.



Methods and Results

Here we briefly highlight results that are described comprehensively elsewhere 25. The design of the single-scale retinex
(SSR) consists of: 1) the choice of a surround function, 2) the placement of the log function, and 3) final signal

processing prior to display/print. Of the three mathematical functions _6'7previously used for a retinex surround, we

found the best visual performance with the Gaussian compared to either the exponential form or the inverse square form

originally used by Land. Unlike previous studies, we find that the placement of the log function is quite important in both

mathematical and visual terms. We show that its placement after the surround formation is preferable to placement prior
to surround formation. Processing after the basic spatial retinex operation was found to be a "canonical" gain-offset

applied uniformally to all color bands rather than an auto gain-offsef calculated across the full three band data. These
elements lead to a SSR defined as:

R(x,y),, log/(x,y)- log [F(x_v) * I (x_v)] (1)

where I_(x,y) is the image distribution in the ith color band, * denotes convolution, and F(x,y) is a Gaussian surround

function. This is followed by the constant gain-offset applied across all color bands which, thus far, has proven to be
universally constant or "canonical" for all images tested. This characteristic provides for general purpose and automatic

application of the method and for simple construction of a multi-scale retinex as:

n

R 2   k,ff v) (2)
k-1

for the kth surround space constant. The design of the multi-scale retinex was found to require a minimum of three scales

for image frame sizes of about 512x512 pixels. A comparison of direct viewing of scenes to scene photometry
established that dynamic range compression for human vision is typically 5: I or so for outdoor scenes with shadows and

easily achieves 500: I for mixed interior/exterior scenes. From this it is evident that everyday scenes often exceed the
255:1 (8-bit) dynamic range of most color imaging systems and that wide dynamic range color imaging, together with

the retinex, or other compressive processing, is essential if recorded color images are to approach the quality of
observation. The use of test scenes together with a battery of diverse digital images revealed that the violations of the

gray world assumption implicit to the retinex were a common occurrence both zonally and globally in images. The

degree of impact on color rendition ranges from slight desaturation of color to rather severe graying for the extreme
cases of "monochromatic" scenes. Therefore a color restoration that could be universally applied was developed because

scene content is not predictable. Thus the MSRCR is given by:

R ',,,_(x,.v)=Rm,t(x,.v) * I 't(x,v) (3)

where the color restoration, IN,(x,y), is:

I' (x,y),, log
|

c.
3

I,,,1

(4)

The current form of the MSRCR does compare favorably with direct viewing by synthesizing dynamic range

compression and color constancy with color and tonal rendition.

Applications

2



We isolate two applications of the MSRCR to illustrate a wider range of applications- aerospace image enhancements

and digital photoprocessing. The MSRCR can be used to advantage in both space operations and remote sensing (Fig.2).
For the former, the often dramatic lighting variations present in space operations can be ameliorated and better visual

information achieved. For remote sensing, the MSRCR brings out the visual information present in large shadow zones

and large zones of low reflectance, such as water areas. An example of an enhancement for improved documentation of
aeronautical research is also shown. The automatic correction of low exposure images is evident and is useful for digital

photoprocessing.

li

a la c-

Figure 2. Enhancement of aerospace images using the MSRCR:

a) Shuttle operations, b) remote sensing, and c) aeronautical research
documentation.

The MSRCR can be used as a "digital darkroom", allowing burning and dodging of areas that would have been

extremely labor intensive if not impossible using traditional darkroom techniques. Although there are software packages
that allow the selective lightening and darkening of specific areas of digitized images, in the cases below, it would be

impractical because of the degree of detail required in the selection of these areas and the different changes required for
each selection.

srn_lo

Figure 3. The MSRCR as a digital photo-processing method: graceful

automatic "burning and dodging":

a) Underwater image from traditional film camera, b,_ Image from satellite

data, c) digitized image from nuclear magnetic resonance (NMR) film.
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Abstract

The goal of image gathering and restoration often is to pro-

duce the best possible picture in terms of fidelity, sharpness

and clarity. However, this goal cannot be attained, at it

has been pursued in the past, by treating image gathering
and restoration as independent tasks. Instead, in a clean

departure from the mores of traditional image processing,

we present an approach that rigorously uses modern com-

munication theory to optimally combine the electro-optical

design of the image gathering device with the digital pro-

cessing algorithm for image restoration. Extensive sim-
ulations have shown that there exists a strong correlation

between the information rate that is produced by the im-

age gathering device and the image quality with which an

image can be restored.

Introduction

Modern visual communication channels increasingly com-

bine image gathering and display with digital image cod-

ing and restoration (Fig. I). So far, however, the image-

gathering devices are still designed to produce the best

possible images when reconstructed without the aid of the

digital processing, and the image restoration algorithms
are still developed and evaluated without fully accounting

for the critical constraints of image gathering and display.

The aim of this paper is to summarize some elements
of a study I. 2, 3 that rigorously unites the electro-optical de-

sign of image gathering and display devices with the dig-

ital processing algorithms for image coding and restora-

tion. In particular, this paper will present the information-

ally optimized image-gathering designs that maximize im-

age quality in terms of clarity and sharpness of fine detail.

The study is based on the two classical works that are the
foundation of modern communication theory. In one work

Shannon 4 introduces the concept of the rate of transmis-

sion of information in a noisy channel, and in the other

Wiener 5 introduces the concept of the minimum mean-

square error restoration of signals corrupted by noise.

Although our mathematical development is firmly rooted

in these familiar concepts, it leads to formulations that are

significantly different from those that are found in the tra-
ditional literature on digital image processing. One fun-

damental difference, which we address in this summary

paper, arises primarily because the limitations inherent in
the realizability of the spatial frequency response (SFR) of

optical apertures and the sampling passband of photode-
tection mechanisms. The limitations inevitably impose a

trade-off between blurring and aliasing on the design of

the image-gathering device (Fig. 2). This precludes the
treatment of visual communication as strictly a bandwidth-

limited process. Instead, it requires the inclusion of the ef-

fects of insufficient sampling both in the end-to-end analy-
sis of the visual communication channel, and in the devel-

opment of the restoration algorithm.

Image gathering and restoration

The image-gathering process transforms the continuous ra-
diance field L(x, y) that is either reflected or emitted by the

scene into the digital signal s(x, y; _),

s(x, y; ,,) = [KL(x, y) • _-(x,y)] ll/+,_p(x, y)+n_/_(x, y),
(1)

where 7(x, y) represents the spatial response of the image-

gathering device, rip(x, y) is the discrete photodetector noise,

n_/a is the analog-to-digital (A/D) conversion noise, and
represents the number of levels used for the A/D conver-

sion. In the Fourier domain, the image-gathering process
is defined as

+hv(v,_,) + _./d(v,.z; _),

where L(v,_z) is the continuous radiance-field transform,

?(t:, _) is the SFR of the image-gathering device, tip(v, aJ)

and h,_/d(V, _'; n) are the discrete photodetector and analog-
to-digital (A/D) conversion noise transforms, and (v,.,,')

are the spatial frequencies with units of cycles per sample.
The tilde "-" is used instead of the caret "^" whenever the

Fourier transformation is discrete and, therefore, the trans-

formed function is periodic in the spatial frequency do-
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Figure 2. SFRs "_(_,o)) of the image-gathering device relative

to the sampling passband B for unit sampling intervals.

main. The function [il is the Fourier transform of the rect-

angular sampling lattice with unit intervals, and is given
by

li._l = Z 5(v-re,w-n) (3)
/Tl,n

= + (4)

where 5(v, w) is the Dirac delta function and lil s accounts

for the sampling sidebands. The associated sa_-t_ling pass-
band

;) -- < 5' <

has unit area, i.e., I#1 = 1, The analog-to-digital transfor-
mation is done for _; levels with r/-bit quantization, where
r/ = log2 _. The image-restoration process transforms
this signal into the observed image R(x, y; _). The corre-
sponding image-restoration process in the spatial frequency
domain is defined as

_r

h(t,,_';g) = t(-ls(z,y;n)_2(v,_z;g) +__(v,_), (5)

where _(v, w; g) is a linear filter that records the digitally

processed signal on an interpolation lattice that is suffi-

ciently fine to suppress the blurring and raster effects of
the image-display process and ._*,.(v,_) is the transform
of the reconstruction noise (e.g., film granularity).

To assess visual communication in terms of informa-

tion theory, the image-gathering process is constrained to
be linear and isoplanatic (spatially invariant), and the radiance-
field and noise amplitudes are constrained to be Gaussian,
wide-sense stationary, and statistically independent. In ad-
dition, we characterize: (a) the radiance field L(x, y) by

the power spectral density (PSD)

= i

of an isoplanatism patch of the scene with area 1.41,(b) the
discrete signal s(x, y) prior to A/D conversion by the PSD

_s(v,w) = [Ke_L(V,w)lq-(t:,_')'2]*Vi_+_p(V,w), (6)

(c) the photodetector noise np(X, y) by the PSD _p(V, _),
and (d) the A/D conversion noise na/d(X, y; n) by the PSD

ffs)= , (7)

where

2 #_ (v,.;) dr' d_.(7" s _ S

Figures of merit

By accounting for the critical constraints of image gather-
ing, we can quantitatively assess visual communication in
terms of the following figures of merit:

1. The rate of transmission of information, or informa-

tion rate, 7-/ that the image-gathering system pro-
duces for the radiance field that resides within its



field of view, as given by

= _ log 2 1 + q_,,(v, w; _) J dv dw,

(8)
where

(_,,(v,w;n) = +L(V,w)[?(v,cv)[ 2 * li._l_ (9)

+K-_['I';(_,, _) + _/_(v, _,';,_)].

2. The maximum-realizable fidelity 5c of the digital im-

age that can be restored from the received informa-
tion, unconstrained by the image-display medium,

as given by

--OO

(10)
where 7-?/(v,w) is the spectral distribution of the in-

formation rate 7-/given by the integrand of Eq. 8.

Figure 3 characterizes the information rate 7-{as a func-

tion of the electro-optical design of the image-gathering

device, as specified by the optical-design index Pc and the

root-mean-square (rms) signal-to-noise ratio (SNR) for a

radiance field with mean spatial detail equal to the sam-
pling interval The curves show that the SFRs that maxi-
mize information 7-{are a function of the SNR. This result

is intuitively appealing for image restoration. In one ex-
treme, when the SNR is low, one would prefer to avoid

substantial blurring--SFR extends well beyond the sam-

pling passband, hence, pc is large--because the noise con-

strains the enhancement of fine spatial detail. In the other

extreme, when the SNR is high, one would prefer to avoid
substantial aliasing--SFR remains mostly inside the sam-

pling passband, hence, Pc is small--because then the noise

no longer constrains this enhancement.

Using the curves shown in Fig. 3, visual communica-
tion channels can be specified, in terms of their SNR and

the SFR of the image gathering device, that maximize the

information throughput. Huck, et al I. 3 show that visual

communication channels that are designed to maximize

the information throughput also maximize the quality of

the restored image in terms of sharpness and clarity of the
fine detail. Table ! lists the electro-optical designs spec-

ified by an SNR and an SFR parameterized by the index

Pc that maximize information throughput. Conventional

image gathering typically has an SFR with Pc = 0.80.

Figure 4 presents images that illustrate the transition

from traditional telephotography and television in which

SNR

256

_ 128
5 64

- ,_ 32

H

.g"
I I I I

0 0.2 0.4 0.6 0.8

Pc

Figure 3. Informationrate H versus optical-design index Pc
for several SNRs.

Design SNR Pc
1 256 0.30

2 64 0.40
3 16 0.60

Table 1: Channel designs t/rat maximize information throughput.

images are reproduced without digital processing to in-

formationally optimized visual communication systems in
which images are reproduced with digital restoration.

Conclusion

The image-gathering device that is designed to produce the
maximum-realizable information rate maximizes both the

quali_' of the image restoration (i.e., the restorability of
images for fidelity, resolution, sharpness, and clarity), and

the robustness of the image restoration (i.e., the tolerance
of the restoration to errors in estimates of the radiance-

field statistics). This critical dependence of the quality and

robustness of visual communication on the design of the

image-gathering device is largely independent of the sta-

tistical properties of natural scenes.
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Abstract

The multiscale retinex with color restoration (MSRCR)

has shown itself to be a very versatile automatic image

enhancement algorithm that simultaneously provides dy-

namic range compression, color constancy, and color ren-

dition. A number of algorithms exist that provide one

or more of these features, but not all. In this paper we
compare the performance of the MSRCR with techniques

that are widely used for image enhancement. Specifically,

we compare the MSRCR with color adjustment methods

such as gamma correction and gain/offset application, his-

togram modification techniques such as histogram equal-
ization and manual histogram adjustment, and other more

powerful techniques such as homomorphic filtering and

'burning and dodging'. The comparison is carried out by

testing the suite of image enhancement methods on a set
of diverse images. We find that though some of these

techniques work well for some of these images, only the

MSRCR performs universally well on the test set.

Introduction

The Multiscale Retinex 1 (MSR) is a generalization of the

single-scale retinex 2-4 (SSR), which, in turn, is based upon
the last version of Land's center/surround retinex 5. The

current version of the MSR combines the retinex dynamic

range compression and color constancy with a color 'restora-
tion' filter that provides excellent color rendition 6-8. This
version of the MSR is called the Multiscale Retinex with

Color Restoration (MSRCR). The MSRCR has been tested

with a very large suite of images and has consistently proven

to be better than any conventional image enhancement tech-

nique. In this paper we present a comparison of the MSRCR

with several of the most popular image enhancement meth-

ods. These include point transforms such as automatic

gain/offset, non-linear gamma correction, non-linear in-
tensity transforms such as the logarithmic transform or the

'square-root' transform; and global transforms such as his-

togram equalization 9, homomorphic filtering l°, and man-

ual 'burning and dodging.'

State-of-the-art Techniques

In this section we briefly describe the characteristics of
some of the state-of-the-art techniques most commonly used

for image enhancement.

Gain/offset correction

One of the most common methods of enhancing an im-

age is the application of a gain and an offset to stretch

the dynamic range of an image. This is a linear operation
and hence has limited success on scenes that encompass a

much wider dynamic range than that that can be displayed.

In this case, loss of detail occurs due to saturation and clip-

ping as well as due to poor visibility in the darker regions
of the image. For a scene with dynamic range between

r,_ and train, and a display medium with dynamic range

dmaz, this transform can be represented by

dmo_

l;(z, 9) = . (I_(x,V) - r,m,), (1)
Fma _. -- Fmi n

where Ii is the ith.input band, and I_ is the ith output band.

This particular transform will transform the scene to com-

pletely fill the dynamic range of the display medium. This
does not imply, however, that this process will provide a

good visual representation of the original scene.

Non-linear Point Transforms

Another well known method used for providing dynamic

range compression is the application of non-linear trans-

forms such as the gamma non-linearity, the logarithm func-

tion, and the power-law function to the original image.

These functions are typically biased toward increasing the

'visibility' in the 'dark' regions by sacrificing the visibil-

ity in the 'bright' areas. The output of such filters can be

described by

I_(z, 9) = P [Ii(z, V)], (2)

where P[] represents the point non-linearity, A typical

point non-linearity is illustrated in Fig. I.
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Figure 1: A t)'pical nonlinear point transform fimction.

Histogram Equalization

A global technique that works well for a wide variety of

images is histogram equalization. This technique is based

on the idea of remapping the histogram of the scene to a

histogram that has a near-uniform probability density func-

tion. This results in reassigning dark regions to brighter

values and bright regions to darker values. Histogram equal-

ization works well for scenes that have unimodal or weakly

bi-modal histograms (i.e. very dark, or very bright), but

not so well for those images with strongly bi-modal his-

tograms (i.e. scenes that contain very dark and very bright

regions).

Homomorphic Filtering

The technique that most resembles ours conceptually and

functionally is homomorphic filtering 1°. The general idea

of homomorphic filtering is shown in Fig. 2. The image

is first passed through a logarithmic non-linearity that pro-

vides dynamic range compression. It is then Fourier trans-

formed, and its representation in the spatial frequency do-

main is modified by applying a filter that provides con-

trast enhancement. The modified image is then inverse

Fourier transformed and is passes through an exponential

non-linearity that 'reverses' the effects of the logarithmic

nonlinearity.* Mathematically,

s_(x,y) = ln[li(x,y)] (3)

s'i(v,w ) = JZ[si(x,y)] (4)

s'/(v,_) = s'(v,_)_(v,_) (5)

*A modified color version of the homomorphic filter was proposed by

Faugeras 11 in 1979. Our implementation simply applies the black and
white version of the homomorphic filter to each band of the color image
and combines the results to form a color output image.

sT'(x,y ) = jF-'[s'i'(v,w)] (6)

I_(x,y) = exp[s'i"(x,y)], (7)

where .Y'[], and ,ft.--l[] represent the Fourier and the in-

verse Fourier transforms respectively, and 7-/ represents

the homomorphic filter. It is in its final exponential trans-

form that the homomorphic filter differs the most from the

MSRCR. MSRCR does not apply a final inverse transform

to go back to the original domain!

Manual Image Enhancement

As both professional and amateur photographers face the

limitations of the narrow dynamic range in current print-

ing technology, and the inadequate performance of image

enhancement algorithms, more and more attention is being

focused on manual enhancement methods. One such tech-

nique is 'burning-and-dodging' where different regions of

an image are interactively modified by a user t. The burn

and dodge tool provides the capability of modifying the

color content of a region by using tools of varying sizes

and shapes that work as electronic "scrims."

Multiscale Retinex with Color Restora-

tion

The general form of the MSRCR can be summarized by

the following equation:

S

7_M, (x, y) : Z w_(log [Ii(x, y)] - (8)

log[I_(x,y) * Ms(x,y)]), i= 1,...,N

where _M, is the ith band of the MSRCR output, S is the

number of scales being used, ws is the weight of the scale,

li is the ith band of the input image,, and N is the number

of bands in the input image. The surround function Als is

defined by

Ms(x,y ) = Kexp [o'_/(x _ + y")],

where as is the standard deviation of the sth surround func-

tion, and ff/£exp [a2/(x 2 + y2)] dx dy = 1. The num-

ber of scales, S, and the widths of the surround functions,

as, are image independent t. In other words, these have

been chosen to maximize enhancement for a large _ num-

ber of images. Once the constants have been selected, then

the process is truly automatic and independent of the vari-

ations in scene statistics.

tAdobe Photoshop 4.0, a commercial photo manipulation software
package, provides a burn and dodge tool.

_Typically for 512 x 512 images. The as may change with the di-
mension of images.

§We have not yet found an exception after having processed 1000+
images !



Figure 2: Hornomorphic filtering 9

Comparison

We have compared the MSRCR with all of the image en-

hancement techniques described above. We present the re-

sults in Figs. 3, and 4. We present the comparison with

manual burning and dodging separately.

Point operations

Figure 3 shows a collage of images that compares the out-

put of the MSRCR with the point transforms. As can be

seen, the MSRCR provided the best overall visual quality

in each case. The techniques such as histogram equaliza-

tion perform well for a wide range of scenes, but they also

fail for a large set. The MSRCR outperforms the other

methods universally.

Homomorphic filtering

Figurc 4 shows a comparison of the MSRCR with homo-

morphic filtering. The homomorphic filter consistently pro-

vided excellent dynamic range compression but is lacking

in final color rendition. The output of the homomorphic

filter in effect appears extremely hazy compared with the

output of the MSRCR though the dynamic range compres-

sion of the two methods appears to be comparable.

Manual Burning and Dodging

Figure 5 shows a comparison of the MSRCR with the re-

suits obtained by using manual burning and dodging. The

manually processed image shows an improvement over the

original as far as the information and detail in the dark ar-
eas is concerned but it lacks the vividness and color satu-

ration that the MSRCR image retains and even enhances.

There is obvious streaking from the very local operation of

the tool stroke--this could be eliminated but only at the ex-

pense of adding considerably to the total processing time.

In the high detail areas where there are sharp differences

in reflectance, a tool with size approaching that of a single

pixel would be required to bring out all the details. Since

the time needed for enhancing a region is roughly in in-

verse proportion to the size of the tool being used for the

processing, this suggests that a very large amount of time

would be needed to perform such an enhancement. On a

scene-by-scene basis, the time and effort required for man-

ual manipulation can be reasonable; but the MSRCR pro-

duces images that are equivalent or better in quality at a

fraction of the time. Because the visual quality of man-

ual burning and dodging is solely limited by the patience

and time commitment of the user, the case shown is per-

haps typical of the performance achieved by the persistent

non-specialist.

Conclusions

We have provided a brief description of the most com-

monly used image enhancement techniques and compared

their operation with the multiscale retinex with color restora-

tion. We have shown that the MSRCR outperforms these

techniques in all cases in terms of dynamic range compres-

sion achieved, and the rendition of the final color image.

The automatic nature of the process also enables us to use

the same set of parameters 'blindly' for each and every im-

age that is encountered. Of course, there are a few images

for which the MSRCR has sub-par performance. But these

are fairly rare and generally relate to defects in the orig-

inal image data--such as preferential clipping of a spec-

tral band. We are currently investigating methods to detect

such scenes and adaptively adjust the MSRCR to correct

for these sub-par performances.
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(a) Original (b) Homomorphic filter (c) MSRCR

Figure 4: A comparison of the MSRCR with images enhanced by homomorphic filtering. The dynamic range comptession achieved by

the two methods is comparable, but the MSRCR produces images that possess much better contrast and sharper colors.

(a) Original (b) Manual burning and dodging (c) MSRCR

Figure 5: Comparison of the MSRCR with manual 'burning-and-dodging.' The manually enhanced image was produced using the

burning and dodging tool provided in Adobe Photoshop 4.0. Circular tools with soft edges were used to modify the color content of

different regions. The total time to produce this enhanced image was 20 minutes. The MSRCR image took 45 seconds on a PentiumPro

200MHz machine.
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The fundamental problem of visual communication is that of producing the best
possible picture at the lowest data rate. We address this problem by extending in-
formation theory to the assessment of the visual communication channel as a whole,

from image gathering to display. The extension unites two disciplines, the electro-
optical design of image gathering and display devices and the digital processing for
image coding and restoration• The mathematical development leads to several intu-
itively attractive figures of merit for assessing the visual communication channel as

a function of the critical limiting factors that constrain its performance. Multires-
olution decomposition is included in the mathematical development to optimally
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This paper seeks to unite two disciplines: the electro-optical design of image gather-
ing and display devices and the digital processing for image restoration. So far, these
two disciplines have remained independent, following distinctly separate traditions.
However. the best possible performance can be attained only when the digital pro-
cessing algorithm accounts for the critical limiting factors of image gathering and
display and the image-gathering device is designed to enhance the performance of
the digital-processing algorithm• The following salient advantages accrue:

1. Spatial detail as fine as the sampling interval of the image-gathering device
ordinarily can be restored sharply and clearly.

2. Even finer spatial detail than the sampling interval can be restored by combining
a multiresponse image-gathering sequence with a restoration filter that properly
reassembles the within-passband and aliased signal components.

3. The visual quality produced by traditional image gathering (e.g. television cam-
era) and reconstruction (e.g. cubic convolution) can be improved with a small-kernel
restoration operator without an increase in digital processing•

4. The enhancement of radiance-field transitions can be improved for dynamic-
range compression (to suppress shadow obscurations) and for edge detection (for
computer vision).

/

Phil• Trans. R. Sac. Land. A (1996} 354, 2249-2287 @ 1996 The Royal Society I

Printed m Great Britain 2249 TEX Paper LI _:"

I

" _ _ __ _,_& . _-._ ._ _. ._.,_._- :,:.k_-._:;.,_F_:_--v<.-r_.._:!_.-t-:e':-.-':r'._.-._-._-_rff._ ". _-'.'_r: _ " "._ <-:. :
_]_ _._:_`.'_:_'t_-'(-_-e_-_N.-_._'._..____..'i..'_._<_:_ .:..::rtr:..%._..::,,:...'. ::" : . :.:: ': :,_ :.: 5.- . .>. :, :> : ....... : :,: :r: ". .: : .>"r:::

;"':_I.:'_:':':"::i,4:::.:_'_ " ".': .; :" ........: :- " )"f: ":'" ::" " :'" :" .... * 5: : ::_ : : :.[.- !:. :i ' .................. :. . . :
Y C::::'::::'.'::: . ........ :, .-> ........... . .... . - ::2>.,_::'_'_-;:.',:::::;".... .. :: .:;.: .... -. :.-, :,..../.-.:. - ... :.,,. . .. .. '.i...: ,-, ,. ...... :
:;_$:,:;_:_'::':[h>...:. " " : : - " : . : - .... : :" " "": • " "" - -': ; " - .... .:-:_.:_.¢. "_'..,-:_:--4 . - . " " . . , -

%



Properties and Performance of a
Center/Surround Retinex

D. J. Jobson, Z. Rahman and G. A. Woodell

IEEE Transactions on Image Processing

(March 1997)



IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. 6, NO. 3, MARCH 1997 451

Properties and Performance
of a Center/Surround Retinex

Daniel J. Jobson, Zia-ur Rahman, Member, IEEE, and Glenn A. Woodell

Abstract--The last version of Land's retinex model for human
vision's lightness and color constancy has been implemented and
tested in image processing experiments. Previous research has es-
tablished the mathematical foundations of Land's retinex but has
not subjected his lightness theory to extensive image processing
experiments. We have sought to define a practical implementation
of the retinex without particular concern for its validity as a
model for human lightness and color perception. Here we describe
the trade-off between rendition and dynamic range compression
that is governed by the surround space constant. Further, unlike
previous results, we find that the placement of the logarithmic
function is important and produces best results when placed after
the surround formation. Also unlike previous results, we find best
rendition for a "canonical" gain/offset applied after the retinex
operation. Various functional forms for the retinex surround are
evaluated, and a Gaussian form found to perform better than the
inverse square suggested by Land. Images that violate the gray
world assumptions (implicit to this retinex) are investigated to
provide insight into cases where this retinex fails to produce a
good rendition.

I. INTRODUCTION

F THE MANY visual tasks accomplished so gracefully
by human vision, one of the most fundamental and

approachable for machine vision applications is lightness and

color constancy. While a completely satisfactory, definition is

lacking, lightness and color constancy refer to the resilience

of perceived color and lightness to spatial and spectral il-
lumination variations. Various theories for this have been

proposed and have a common mathematical foundation [1].
The last version of Land's retinex [2] has captured our atten-

tion because of the ease of implementation and manipulation

of key variables, and because it does not have "unnatural"

requirements for scene calibration. Likewise, the simplicity

of the computation was appealing and initial experiments

produced compelling results. This version of the retinex has

been the subject of previous digital simulations that were

limited because of lengthy computer time involved and was

implemented in analog very large-scale integrated circuits

(VLSI) to achieve real-time computation [3], [4]. Evidence

that this retinex version is an optimal solution to the lightness

problem has come from experiments posing Land's Mondrian

target, randomly arranged two-dimensional (2-D) gray patches,
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Fig. 1. Spatial form of the center/surround retinex operator. _a) 3-D repre-

sentation tdistoned to visualize surround). (b) Cross-section to illustrate wide

weak surround.

as a problem in linear optimization and a learning problem for

back propagated artificial neural networks [5], [6].

The utility of a lightness-color constancy algorithm tbr

machine vision is the simultaneous accomplishment of:

1) dynamic range compression;
2) color independence from the spectral distribution of the

scene illuminant;

3) color and lightness rendition.

Land's center/surround retinex demonstrably achieves the

first two, although Land emphasized primarily the color con-

stancy properties. Well-known difficulties arise, though, for

1057-7149/97510.00 © 1997 IEEE
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Blue sky only illumination Sunlight illumination Tungsten illumination Computer-generated s_adow

Input

images

Retinex

output

Fig. 2. Demonstration of retinex color constancy and dynamic range compression (prior to optimizing rendition) for a Gaussian surround with small

space constant (15 pixels).

color and lightness rendition [1], [3], [6]. These consist of

i) lightness and color "halo" artifacts that are especially

prominent where large uniform regions abut to form a high

contrast edge with "graying" in the large uniform zones in an

image, and ii) global violations of the gray world assumption

(e.g., an all-red scene) which result in a global "graying

out" of the image. Clearly, the retinex (perhaps like human

vision) functions best for highly diverse scenes and poorest

for impoverished scenes. This is analogous to systems of

simultaneous equations where a unique solution exists if and

only if there are enough independent equations.

The general form of the center/surround retinex (Fig. I) is

similar to the difference-of-Gaussian (DOG) function widely

used in natural vision science to model both the receptive

fields of individual neurons and perceptual processes. The only

extensions required are i) to greatly enlarge and weaken the

surround Gaussian (as determined by its space and amplitude
constants), and ii) to include a logarithmic function to make

subtractive inhibition into a shunting inhibition (i.e., arithmetic
division). We have chosen a Gaussian surround form whereas

Land opted for a 1/r 2 function [2] and Moore et al. [3] used a

different exponential form. These will be compared in Section

II. Mathematically, this takes the form

Ri(z,y) = log Ii(x,y) -log [F(x,y) * I,(x,y)] (1)

where Ii(x,y) is the image distribution in the ith color

spectral band, "," denotes the convolution operation, F(x, y)
is the surround function, and R_(x, y) is the associated retinex

output.

This operation is performed on each spectral band to pro-

duce Land's triplet values specifying color and lightness. It is
readily apparent that color constancy (i.e., independence from

single source illuminant spectral distribution) is reasonably

complete since

Ii(x, y) = Si(x, y)ri(x, y) (2)

where S,(x.y) is the spatial distribution of the source illu-

mination and r,(x. fl), the distribution of scene reflectances

(integrated over the spectral band response), so that

S,(x. y)r, (x. y) (3)
Rz(J:. fl) = log _, (x. y)?i(x, y)

where the bars denote the spatially weighted average value.

As long as Si(x.y) _ Si(x.y), then

r,(x. r])
R,(x.q),-_tog + . (4)

• T, (x. :_j)

The approximate relation is an equality lot many cases and.
for those cases where it is not strictly true, the reflectance ratio
should dominate illumination variations.

Color constancy is demonstrated (Fig. 2) for the extreme

cases of blue skylight illumination, direct sunlight only, and

tungsten illumination. Actual daylight illumination should fall

arbitrarily somewhere between the first two cases. Film and

electronic cameras without computational intervention or film

selection would produce the top row of images. Dynamic range

compression is also readily demonstrated (Fig. 2, right) with

computer simulation. Here the original image data is multiplied

by a hyperbolic tangent "shadow." Again, cameras without

computation produce the upper result (or with a change of

f/stop or exposure would bring out the shadowed detail but

at the expense of saturating the nonshadowed image zones).

Strikingly, color balance is retained across the wide dynamic

range encompassed and the highly nonlinear operation of the
retinex.

These two examples do, however, point to the difficulty of
realizing satisfactory color rendition in contrast to the ease

of achieving color constancy and dynamic range compres-

sion. Taken together, this discussion indicates the exciting
possibilities that motivated us to engage in more extensive

investigation.
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(a) (b)

(c) (d)

Fig. 3. Examples of serious photographic defects due to spectral and/or spatial illumination variations. (a) "Green" kitchen due to fluorescent illumination.

(b) Sodium vapor illumination. (c) Tungsten indoors/daylight outdoors. (d) Obscured foreground.

The need for dynamic range compression and color con-

stancy, especially if both are accomplished simultaneously by

a simple real-time algorithm, is well known to photographers.

Discrepancies between the photographer's perception through

the viewfinder and the captured film image can be quite bizarre

(Fig. 3), and require constant vigilance to avoid impossible

lighting situations and to carefully select the appropriate film

and processing for the illuminant's spectral distribution. The

fundamental limit [3] is recognized to be the film or cathode

ray tube's (CRT's) narrow dynamic range and static spectral

response. Print/display dynamic range constraints of 50 : 1 are,

however, compatible with the magnitude of scene reflectance

variations. Except for extreme cases (snow or lampblack)

reflectance variations are only 20:1 [7] and often much

less. Thus, even the extremes of reflectance of _ 50 : 1 are

easily spanned by print/display media. Clearly illumination

variations are the culprit which human visual perception has

overcome by eye-brain computation. Electronic still cameras

have an intrinsically high dynamic range (> 2000: 1) [8]

set by the detector array electronics, and an even higher

dynamic range within the detector array proper, since the

limiting factor is usually the preamplifier noise added in

transferring image signals off-chip or digitization noise added

subsequently. Therefore, at least for electronic still cameras,
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Fig. 4.

Before surround After surround

Demonstration of improved rendition obtained applying the log response after surround formation (,::_ = 80 pixe]s),

we can conclude that sufficient dynamic range is available to
retain the full variations of both illumination and reflectance

in arbitrary scenes. So it is certainly reasonable to consider

either analog [3] implementations of compression/constancy

or digital implementation if the initial A/D conversion is done
at 10-14 bits (b), rather than the usual 8 b.

Recent advances in high-speed computing led us to re-

consider both extensive digital simulations of the retinex

and real-time digital implementations for practical use in

future electronic camera systems. The hours of computer time

previously reported [3] are now reduced to minutes and real-

time implementations using specialized digital hardware such

as digital signal processing (DSP) chips seem reasonable.

In other words, the full image dynamic range is available

from current electronic cameras, real-time computation is

realizable, and the ultimate bottleneck is only at the first

print/display. Obviously, there are image coding aspects to

both dynamic range compression and color constancy. We

will touch upon these briefly but concentrate primarily on the

design of the algorithm to produce combined dynamic range

compression/color constancy/color-lightness rendition.
We have seen that the center/surround retinex is both color

constant and capable of a high degree of dynamic range

compression. It remains, then, to specify an implementation

that produces satisfactory rendition and examine alternatives

to determine if other design options are equally good or

better. Because the retinex exchanges illumination variations

for scene reflectance context dependency [9], scene content

becomes a major issue especially when it deviates from

regionally gray average values--the "gray world" assumption

[1]. Therefore, testing with diverse scenes, including random

ones, is important to pinpoint possible limits to the generality
of this retinex.

Initial image processing simulations revealed the following

unresolved implementation issues:

1) the placement of the log function;

2) the functional form of the surround;

3) the space constant for the surround;

4) the treatment of the retinex triplets prior to display.

These will now be explored more comprehensively. The
results of testing the optimized algorithm on diverse scenes

will then be presented with special emphasis on "'gray-world"

violations. Finally, the relationship of the algorithm to neuro-

physiology will be examined briefly.

II. ISSUES

A. Placement of Log Function

Previous research [3], [6] has largely concluded that the

logarithm can be taken before or after the formation of the

surround. Processing schemes [31, [61, [10] adhering closely to

natural vision science, i.e., an approximate log photoreceptor

response, favor placing log response at the photodetection

stage prior to any surround formation. Our preliminary testing

of this produced rather disappointing results and prompted us

to reopen this seemingly decided issue. Initial testing of the

postsurround log produced encouraging results with much less

emphatic artifacts. Mathematically, we have that

R1 = logI(x, y) - log[I(x, y) • F(x. 9)] (5)

and

R_, = logI(x,y) - {[logI(x.y)] , F(x.q)} (6)

are not equivalent. The discrete convolution [log I(x,y) *

F(x. y)] is, in fact, equivalent to a weighted product of I(x. y),

whereas the second term in (5) is a weighted sum. This is

closely related to the difference between the arithmetric mean

and the geometric mean except that F(x, y) is selected so that

ff F(x, y) dxdy 1 (7)

which does not produce exactly the nth root of n numbers

as the geometric mean would. Since the entire purpose of

,I

i



JOBSON et al.: CENTER/SURROUND RETINEX 455

"Z"

I.t_

Fig. 5. Comparison of three surround functions--inverse square, exponen-

tial, and Gaussian, normalized to equal full-width half-max (FWHM) response.

The log(r) scale is necessary for comparison purposes but does diminish the
differences between the functions. A linear r scale (if it were graphically

feasible) would show very dramatic differences. The space constants are ci =

50 pixels, c2 = 72 pixels, and c3 = 60 pixels.

the log operation is to produce a point by point ratio to a

large regional mean value, (5) seems the desired form and

our image processing experiments bear out this preference. A

typical example is shown in Fig. 4. While the halo artifact

for (6) can be diminished by manipulation of the gain and

offset, this results in a significant desaturation of color. In

other examples, more severe color distortions occur, which

likewise cannot be removed by manipulation of the gain/offset.

In addition, a shadow simulation indicates much less dynamic

range compression for (6). Therefore, we have selected the (5)

form for our testing and optimization. This form is also that

given in Land's original presentation [2], though he is quoted

as feeling the two forms were equally useful in practice [6].

B. The Surround Function

Land proposed an inverse square spatial surround

F(z', y') = 1/r 2 (8)

where

r = _ + yl2

which can be modified to be dependent on a space constant as
1

F'(x', y') - 1 + (r2/c2)" (9)

Moore et aL [3] examined an exponential "absolute value"

F(x', y') = e -I'1/c2 (10)

because it is an approximation to the spatial response of analog
VLSI resistive networks, and Hurlbert [6] investigated the

Gaussian:

F(z', y') = e -_/_ (11)

because of its widespread use in natural and machine vision

modeling. A cross section of these 2-D functions (Fig. 5)
shows that for any particular choice of space constant, the

inverse square rolls off very rapidly, but ultimately retains a

higher response to quite distant image pixels than the expo-
nential and Gaussian forms. At distant values, the exponential

ultimately exceeds the Gaussian response, so that in general the

inverse square is consistently more "global," the exponential
is less so, and the Gaussian is more distinctively "regional."

In initial tests, no space constant for the inverse square

surround could be found that achieved reasonable dynamic

range compression, i.e., adequate enhancement of shadowed
detail. The best performance is shown in Fig. 6. In contrast,

both the exponential and Gaussian forms produced good

dynamic range compression over a range of space constants.
Because the Gaussian offered the most experimental flexibility

(good performance over wider range of space constants), it
was selected for this implementation. It is likely that the

exponential is equally useful and this is clearly of importance

for analog VLSI resistive network hardware implementations

of retinex computations.

C. Surround Space Constant

While Land proposed the center/surround retinex with a 2--4

pixel diameter for the center (perhaps in keeping with the
widely known coarser spatial resolution of purely chromatic

vision), a center of only 1 pixel is clearly demanded for

general-purpose image processing. Only after segmentation

into lightness and chromatic images can the purely chromatic

images be made coarser. In contrast, the surround space con-

stant cannot be so clearly defined. Land proposed an inverse

square surround with a full width-half maximum (FWHM)
of 40 ° of visual angle. This corresponds to FWHM of about

270 visual pixels (assuming a visual pixel is _0.015°).

We examined the performance of the Gaussian surround over

a wide range of space constants. Since previous research [6]

found variations in the space constant with the spatial variation

in shadow profiles, a particular concern is the question of

an optimum space constant that gives good performance for

diverse scenes and lighting conditions.

The image sequence (Fig. 7) established a trade-off that has

not been previously studied. In varying the space constant from

small to large values, dynamic range compression is sacrificed

for improved rendition. The middle of this range (50 < c3 <

100 pixels) represents a reasonable compromise, where shad-
ows are fairly compensated and rendition achieves acceptable

levels of image quality. This is qualitatively compatible with

human visual perception in that the treatment of shadows is

influenced by their spatial extent. Larger shadows tend to be

more compensated (less dark) while smaller shadows appear

less compensated (blacker and with less visible internal detail).

While we are not concerned with defining a form of

the retinex that accurately models human vision, we must

ultimately compare performance to that of human perception

in order to meet basic image quality requirements. Our intent,

then, is to find a form of the retinex that is functionally

equivalent to human visual perception. Since the performance
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Fig. 7. Trade-off between dynamic range compression and color rendition for the Gaussian surround. Small space constants produce excellent dynarmc

range compression, while large constants produce the best rendition.

of human vision for complex natural images has not been

comprehensively defined, we are left with purely subjective

assessments of image quality. Since the retinex is, to some

extent, compensating for lighting variations and approximating
a "reflectance world," there are two directions available for

assessment. First is the psychophysical comparison between

the human observation of the scene to the processed and

displayed image. Second is the quantitative comparison of the

processed/displayed image to the measured scene reflectance

values. The latter approach is replete with problems since

lighting variations are clearly not completely removed by

human visual perception. If, however, we pursue additional

computation to segment lightness and chromatic images, the

chromatic images are likely to be measures of relative spectral

reflectance ratios that can be compared with scene reflectances

to establish a figure-of-merit. Here, we will rely only on the
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Fig. 8. Schematic of a characteristic retinex histogram illustrating the final

gain/offset selection applied uniformly to the three color subimages.

first comparison, since we are examining the overall utility of

the computation to enable electronic imagery to be as resilient
as the human observer of the same scene and not lose or distort

major semantic information that would have been obtained by

direct observation. The second approach will, perhaps, become

more important in scientific data analysis such as multispectral

classification in remote sensing imaging.

D. Treatment of Retinex Output Prior to Display

During initial experiments, we were surprised to find a

characteristic form for the histograms of diverse scenes after

the retinex operation (Fig. 8). Exceptions were for severe

violations of the "gray world" assumption, e.g., an all-red

scene. These violations are explored in a subsequent section, so

here we will examine a natural image with reasonable scene

diversity.

Land's proposal [2] of the center/surround retinex does

not explicitly address the issue of a final treatment with the

possible implication that none is necessary. On the other hand,

Moore et al. [3] advocate the automatic gain/offset approach,

whereby the triplet retinex values are adjusted by the absolute
maximum and minimum found across all values in all the

color bands. Our own empirically derived approach (Fig. 8)

differs from either of these in that a constant gain/offset

is selected for best color rendition. This results in actually

clipping some of both the highest and lowest signal transitions.

Little information is lost because the retinex output signals

form, to a large degree, a contrast image (being in essence

a ratio). This constant gain/offset has thus far proven to be

independent of image/scene content. Our approach, otherwise,

agrees with Moore et al. in that a final gain and offset is

uniformly applied to all pixels in all three color bands. A

comparison of these two approaches is illustrated (Fig. 9) to
underline the considerable visual differences encountered. We

speculate that the significant deviations from the characteristic

histogram that occur for gross violations of the gray-world

assumption could be used to detect errors. The gain/offset

appears to be invariant from image to image, so that we
have the sense that it is canonical and, therefore, satisfies the

original intent of Land to produce a general computation that
applies to most images. The term "canonical" refers to the

post-retinex gain/offset being general constants that do not

vary either from image-to-image or between band-to-band.

E. Summary.

The specific implementation we have defined from prelimi-

nary testing is a center/surround operation with the following
characteristics:

1) the spatial extent of the center is the individual pixel,

which can be thought of as a small Gaussian defined by

the optical blur function of the imaging optics;
2) the form of the surround is Gaussian;

3) The spatial extent of the surround is that for a Gaussian

space constant of about 80 pixels (which corresponds to

an FWHM spread of 210 pixels):

4) the ]ogarithm is applied after surround formation by 2-D
spatial convolution;

5) a "canonical" gain/offset is applied to the retinex output

which, in signal terms, clips some of the highest and

lowest signal excursions. The gain and offset are general

constants that do not vary either from image to image
or between color bands.

Our implementation differs from previous ones in that Land

[2] proposed an inverse square surround while Moore et al.

[3] and Hurlbert [6] concentrated on placement of the log

prior to surround formation (or else considered placement as

interchangeable). Finally, Moore et al. specified an automatic

gain/offset process rather than the canonical one used here. All

of these differences were shown to result in significant visual

effects on processed images.

III. RESULTS

Because the mathematics, though simple, involve a non-

linearity coupled to large-scale spatial interactions, the per-

formance on complex images is not predictable. The only

recourse is to apply the method to diverse images in hopes

of exposing limitations and distortions. The performance on

images not meeting the regional gray-world assumption is

examined to attempt to define ways to detect and minimize

or correct errors if they occur in some systematic fashion. It

should be clear that while the dynamic range compression and

color constancy are readily achievable, the goal of rendition

poses a great challenge.
Rendition is as difficult to define as it is to achieve.

Our working definition is that rendition means producing a

resultant displayed image that is convincingly like what a
human observer would see when examining the same scene

as the camera does. Therefore rendition means fidelity both

to the scene and to human perception. This is by necessity

a qualitative criterion because, while we can quantify the
scene, the current state of color psychophysics does not

provide the ability to quantify color perception in complex

scenes. Our working criteria is to compare the original and

processed images visually and, where possible, to compare the
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Fig. 9. Comparison of the visual performance of auto gain/offset versus "canonical" gain/offset, The auto gain/offset is selected on the absolute maximum

and minimum values in all three color bands and applied uniformly to all three as a global operation• The "canonical" gain/offset accepts some clipping of

extreme high and low values but provides superior rendition with minimal loss of visual information Ic3 = 80).

Input
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Fig. 10. Results for diverse test images--stochastic and deterministic; computer-generated; natural; and false-color (Ca = 80 pixels).

processed image to the scene. While quantitative measures do

exist for comparing input/output images, these do not capture

the essential quality of visual significance. An abundance of

psychophysical research underlines the central role of context

in visual significance as well as the type of visual phenomena.

We would like to admit and accept any distortion that the

eye-brain does not find disturbing or perceptible. So we are

left at this time with a reliance upon only visual perception

in assessing the rendition in these experiments in retinex

processing. From our own visual experience, we make the

following statements about human visual perception:

1) The dynamic range compression of shadows is related
to the visual extent of the shadow. Larger shadows are

more compressed than smaller shadows, i.e., the surfaces

in larger shadows are lighter than those same surfaces
in much smaller shadows.

2) Lightness constancy seems less strong than color con-

stancy. Hue and saturation of colors seem less af-

fected by lighting variations, than absolute gray scale.

In complex natural scenes the perception of color within

shadows is not affected significantly, but the perception

of lightness is.
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Fig. ll. Results for a test scene with multiple color illuminants and familiar test targets that allows comparison of retinex performance to direct human

observation of the scene• Test targets on the left are predominantly in fluorescent illumination, while the middle set is in daylight, and the ones on the

right are in tungsten light. For direct human observation, there is no shadow perceived at the top, no greenish overall tint observed (due to fluorescent

illumination), and excellent color constancy of test targets.

From psychophysical research [11], we add:

3) Lightness constancy is primarily the preservation of rel-

ative gray-level relationships even though the sensations

of absolute lightness slide up and down to some extent

with lighting variations.

Therefore, we look for these same effects in the results of

retinex processing.

All the images used in subsequent testing are 512 × 512

pixe[s, three spectral bands, with 8 b per band. The test scene

image (Fig. 11) was acquired using Ektachrome slide film

and then digitized using a high-resolution slide scanner. All

color prints were printed on a Kodak XLT7720 continuous-

tone printer with 7 = 1.5 to compensate for the printer's
nonlinear transfer function.

We begin by showing a range of diverse images (Fig. 10)

for which this retinex produces good results, and include a

false color LANDSAT image (i.e., green, red, and infrared are

spectrally translated to blue, green, and red). Also included

is a computer generated stochastic image. This image is con-

structed as a Poisson distribution of edges around a selectable

mean spatial detail-parameter and intensity levels [12] that are
Gaussian distributed in the three color bands. The case shown

is for a high degree of spatial detail. The low signal values of

the original LANDSAT image are accurately portrayed.

While these results are encouraging and support the hy-

pothesis that this retinex performs well on a wide array of

images, we felt it necessary to go further and construct a

test scene (Fig. 11) that combines mixed color illuminants,

variations, and familiar colors in multiple locations. This test

allows us to compare the processed image to the scene and

to an extent convey this comparison to the reader and for a

case with visually severe defects. Our direct observation of

this scene does not contain any sense of the shadow at the

top of the image, and color constancy of the color charts and

gray scales is almost complete. Likewise, direct observation

contains no sense of the greenish tint that dominates the raw

image and is due to the predominant fluorescent illumination.

The optimized single scale retinex result falls short of human

observation but succeeds in producing the correct beige scene

color and some dynamic range compression of the shadow•

The defects in the single scale retinex are the imperfect

local color constancy (some of which is due to insufficient

dynamic range in the raw image) and insufficient dynamic

range compression of the shadow. A much smaller scale

retinex (c3 = 15 pixels) produces excellent dynamic range

compression and local color constancy (to the limit of the

original image). This suggests that the two scales produce

complementary, visual information and that a multiple-scale

retinex should more closely approach the performance of

human vision. This experiment dramatically convinced us of

the importance of test scenes and comparison to direct human

observation. Without that, we would have had no way of

knowing that the prominent shadow was not really evident

to the human observer or that local color constancy of the

test targets was so perfect for human perception. The retinex

processing seems capable of producing a rendition far closer

to our direct observation than the unprocessed image.

We also explored test images (Fig. 12) with zonal and

global "gray-world" violations, i.e., spatially averaged relative

spectral reflectance values are clearly not equal in the three

color spectral bands. Mathematically, it is clear that errors are

produced by retinex processing for these cases, but we wished

to understand the visual impact of these errors for a variety

of cases. The common thread in these retinex images is that

"middle gray" is an error and transmits the message--"local

equals regional context." An intuitive remedy seems to be to

expand "middle gray" regions to larger space constants and, ul-

timately, to replace the log surrounds with the log of the global

means (Fig. 12, bottom). This does correct for zonal gray-

world violations but clearly not for global violations (Mars

surface and green checkerboard images). The Mars surface

image is especially instructive as a near-global gray-world

violation. The correct color appears only at chromatic edges

but not at lightness edges. This suggests the possible benefit of

a chromatic/lightness segmentation and a "filling in" operation
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Fig. 12. Results for images with noticeable artifacts due to zonal or global violations of the gray-world assumption and the substitution of log global

mean values for log surround to correct regional gray-world violations (c3 = 80 pixels).

[6] from chromatic edges only. The truly global gray-world

violation of the green checkerboard image suggests that upon

detection of no chromatic edges the processing should retreat

to log image (equivalent to human color perception' s "aperture

mode" [13]). Ultimately, we expect there to be a way to
detect and correct these error cases. Since the retinex can

most fundamentally be understood as exchanging illumination

dependencies for contextual dependency, we anticipate that

the solution to this problem lies in the analysis of the large
zonal context at the scale of the surround function. This is

obviously the central problem that limits the retinex's general

application, but our results also indicate that (in the form we

tested) the retinex performs well on a rather wide array of both

natural and computer-generated images.
We do feel, however, that the final treatment of the retinex

triplets prior to display would benefit from some additional

"tinkering," such as a fairly restrained nonlinear intensity
transformation. The "canonical" gain/offset is surprising in

view of the fact that the retinex output is proportional to the

log of reflectance ratios.

IV. DISCUSSION

Our findings raise several questions with respect to both
natural and machine vision. Perhaps the most interesting is the

placement of the log function after surround formation. This is

completely contrary to the measured approximate logarithmic

response of cone photoreceptors and the design of Mead's
silicon retina [10], which was based on those measurements.

An examination of recent measurements of primate cones [ 14]

reveals that, while the electrical probe is sampling a single

cone, the cone is intact in a small patch of retina. Therefore,

we wonder to what degree the measurements may reflect a

"network" response rather than just the cone response.

Another possible explanation is that other higher level

nonlinear operations might serve to diminish or correct the

emphatic halo artifact of the initial log response. The filling-in

mechanism [6] is a possible candidate for this, and could also

be responsible for correcting errors due to gray-world viola-

tions. In any event, it seems reasonable to reconsider a linear

photoresponse for machine vision applications especially in

view of the wide dynamic range available from current charge-

coupled device (CCD) detector arrays. Clearly for dynamic

range compression, the log function must be applied prior

to any significant bottleneck. For the retina, this bottleneck

appears to be the ganglion cells that transmit from the retina

to the lateral geniculate nucleus of the brain.

It has not been possible to fully reconcile Land's retinex

with the neurophysiology of the primate retina. Receptive

fields are invariably found to be spectrally opponent. Math-

ematically (and regardless of log placement), this is clearly

not color constant since the spectral ratios of the illumi-

nant variables do not cancel. Land [15] proposed that linear

transformations, much like television's red-green-blue (RGB)

to hue-saturation-value (HSV), were a workable resolution

which, in combination with his center/surround, does result in
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a color constant system as

RGR = log SGrG -- log Sara

RRG = log Snra - log SGT G

(12)

(13)

where RGR is the "green minus red" spectrally opponent

retinex, and RaG is the "red minus green" opponent form.
These can be combined to form

DO
RGR = RGR + RaG (14)

= log SGr G + log SRr R -- log Snrn - log SGr G

(15)

DO
where RGR is the double opponent "green minus red" retinex,
which is color constant because

R D° = log rGrRGR (16)
rGrR

when Si = Si for the ith spectral channel.

Likewise, for a blue yellow double-opponent form:

RB_" = log SBrB -- log Syry (17)

where RBy is a "blue minus yellow" spectral opponency
retinex, and

S}-ry = C1SRr R -q.- C2SG1" G (18)

and Cl, 02 are weighting constants. Note that the placement of
the log is important here, since

log Syr_. _ log clSnrn + log c2Sarc. (19)

Analogously, for the "green minus red" case

R D° = log rBry (20)
rBry

where R D° is the double opponent "blue minus yellow"
retinex, which is likewise color constant. For the color constant

lightness channel, the lightness "center," RL is given by

RL = log C3SBr B q- log c4SGrc + log CsSRr R (21)

and the lightness surround, RL, is given by

RL = log C3SBrB + log c4Sarc + log csSnrn. (22)

Again, log placement is important, since

log SBrB # log SBrB (23)

which leads to a color constant lightness center/surround
retinex as

RL -- -RL _- log rBrGrR. (24)
rBrGrR

Previous work [3], [6], [15] indicates that perceptual color

constancy is consistent with noncolor constant early vision

signals up to and perhaps including the striate cortex with

the first clearcut evidence of color constancy in V4 cortex

(downstream in the processing pathways from the striate cortex

but prior to the full perceptual constructs, which appear to
occur in the inferotemporal and parietal-cortices).

On the whole, we are impressed by the performance of this

retinex on wide ranging natural and test images even with

the shortcomings of the gray-world assumption that show up

as a significant perceptual distortion in certain of our test

images. We are encouraged that these "error" cases appear

to be detectable, and therefore may be minimized or corrected

by some simple extension of this retinex. We feel that this

extension can be based upon the fundamental mechanism of

the retinex, which is to exchange illumination variations for

context relationships and is likely to require a multiple scale

approach.

While we have not yet explored the relationship of retinex

operations to image coding schemes, there is certainly an

important connection. To the extent that a retinex operation

is a general "front-end" computation for implementation in

cameras, the retinex outputs become the inputs for image

coding. The dynamic range compression aspect of the retinex

does restrict signal variances as well as preserving scene
information that would otherwise be lost to saturation or clark

clipping. Dynamic range compression has been found to be

broadly beneficial [12] for image coding.

V. CONCLUSIONS

In the course of defining a specific form for the cen-
ter/surround retinex, we encountered several fundamental is-

sues that had not been fully resolved by previous investiga-
tions. These were:

1) placement of the log function:

2) functional form of the surround;

3) size of the surround space constant;

4) treatment of the retinex outputs prior to final display.

The examination of these issues with experiment image

processing led us to define a specific retinex that is different
from previous versions. Our version consists of:

1) placement of the log function after surround formation:

2) use of the Gaussian form for the surround (although an

exponential form is also a good choice):

3) a space constant of about 80 pixels as a reasonable

compromise between dynamic range compression and
rendition. (Better rendition can be achieved with even

larger space constants, but at the expense of detail in

shadow zones. This trade-off between compression and
rendition is a property of the retinex);

4) a "canonical" gain/offset for the final treatment of retinex

output signals.

It remains to generalize the retinex processing to handle
gray-world violations and refine the final treatment of the

retinex outputs. Even so, we are encouraged by the overall

performance of this retinex--that it combines dynamic range

compression, color constancy, and lightness/color rendition.

The trade-off between dynamic range compression and color

rendition, that is governed by the surround space constant, sug-

gests a multiscale approach to generalizing retinex processing.



An implementation in analog VLSI or digital VLSI computer

chips is an exciting possibility for realizing "smart" cameras

of the future.
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Abstract--Direct observation and recorded color images of
the same scenes are often strikingly different because human
visual perception computes the conscious representation with
_ivid color and detail in shadows, and with resistance to spectral
shifts in the scene illuminant. A computation for color images
that approaches fidelity to scene observation must combine dy-
namic range compression, color consistency--a computational
analog for human vision color constancy--and color and lightness
tonal rendition. In this paper, we extend a previously designed
single-scale center/surround retinex to a multiscale version that
achieves simultaneous dynamic range compression/color consis-
tency/lightness rendition. This extension fails to produce good
color rendition for a class of images that contain violations of
the gray-world assumption implicit to the theoretical foundation
of the retinex. Therefore, we define a method of color restoration
that corrects for this deficiency at the cost of a modest dilution
in color consistency. Extensive testing of the multiscale retinex
with color restoration on several test scenes and over a hundred
images did not reveal any pathological behavior.

I. INTRODUCTION

COMMON /and often serious) discrepancy exists be-tween recorded color images and the direct observation

of scenes <see Fig. 1). Human perception excels at constructing

a visual representation with vivid color and detail across the

wide ranging photometric levels due to lighting variations. In

addition, human vision computes color so as to be relatively

independent of spectral variations in illumination [1 ]: i.e., it is

color constant. The recorded images of film and electronic

cameras suffer, by comparison, from a loss in clarity of

detail and color as light levels drop within shadows, or

as distance from a lighting source increases. Likewise, the

appearance of color in recorded images is strongly influenced

by spectral shifts in the scene illuminant. We refer to the

computational analog to human vision color constancy as color

consistency. When the dynamic range of a scene exceeds

the dynamic range of the recording medium, there is an
irrevocable loss of visual information at the extremes of

the scene dynamic range. Therefore, improved fidelity of

color images to human observation demands i) a computation

that synthetically combines dynamic range compression, color
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consistency, and color and lightness rendition, and ii) wide

dynamic range color imaging systems. The multiscale retinex

(MSR) approaches the first of these goals. The design of

the computation is tailored to visual perception by comparing

the measured photometry of scenes with the performance of

visual perception. This provides a rough quantitative measure

of human vision's dynamic range compression--approaching

1000:1 for strong illumination variations of bright sun to deep
shade.

The idea of the retinex was conceived by Land [2] as a

model of the lightness and color perception of human vision.

Through the years. Land evolved the concept from a random

walk computation [3] to its last form as a center/surround

spatially opponent operation [4]. which is related to the

neurophysiological functions of individual neurons in the

primate retina, lateral geniculate nucleus, and cerebral cortex.

Subsequently, Hurlbert [5]-[7] studied the properties of this

form of retinex and other lightness theories and found that they

share a common mathematical foundation but cannot actually

compute reflectance for arbitrary scenes. Certain scenes violate

the "gray-world" assumption--the requirement that the aver-

age reflectances in the surround be equal in the three spectra]

color bands. For example, scenes that are dominated by one

color--"monochromes"--clearly violate this assumption and

are forced to be gray by the retinex computation. Hurlbert

further studied the lightness problem as a learning problem
for artificial neural networks and found that the solution had

a center/surround spatial form. This suggests the possibility

that the spatial opponency of the center/surround is. in some
sense, a general solution to estimating relative reflectances

for arbitrary lighting conditions. At the same time, it is

equally clear that human vision does not determine relative

reflectance, but rather a context-dependent relative reflectance

since the same surfaces in shadow and light do not appear

to be the same. Moore et aL [8]. [9] took up the retinex

problem as a natural implementation for analog very large

scale integration (VLSI) resistive networks and found that

color rendition was dependent on scene content--whereas
some scenes worked well. others did not. These studies also

pointed out the problems that occur due to color Mach bands

and the graying-out of large uniform zones of color.

We have previously defined a single-scale retinex [10]

(SSR) that can either provide dynamic range compression

(small scale), or tonal rendition (large scale), but not both

simultaneously. The multiscale retinex with color restoration

(MSRCR) combines the dynamic range compression of the

small-scale retinex and the tonal rendition of the large scale

1057-7149/97510.00 © 1997 IEEE
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Fig. 1. Illustration of the discrepancy between color images and and perception. The right image is a much closer representation of the visual

impression of the scene•

retinex with a universally applied color restoration. This color

restoration is necessary, to overcome the problems that the

MSR has in the rendition of scenes that contain gray-world

violations. It merges all the necessary ingredients to approx-

imate the performance of human vision with a computation

that is quite automatic and reasonably simple. These attributes

make the MSRCR attractive for smart camera applications,

in particular for wide dynamic range color imaging systems.

For more conventional applications, the MSRCR is useful

for enhancing 8-b color images that suffer from lighting

deficiencies commonly encountered in architectural interiors

and exteriors, landscapes, and nonstudio portraiture.

Most of the emphasis in previous studies has been on the

color constancy property of the retinex, but its dynamic range

compression is visually even more dramatic. Since we want to

design the retinex to perform in a functionally similar manner

to human visual perception, we begin with a comparison of

the photometry of scenes to their perception. This defines (at

least in some gross sense) the performance goal for the retinex

dynamic range compression.

An apparent paradox has been brought to our attention by a

colleague as well as a reviewer. This paradox is so fundamental

that it requires careful consideration before proceeding. The

question, simply stated, is why should recorded images need

dynamic range compression, since the compression of visual

perception will be performed when the recorded image is

observed? First we must state categorically that recorded

images with significant shadows and lighting variations do

need compression. This has been our experience in comparing

the perception of recorded images with direct observation for
numerous scenes. Therefore, we have to conclude that the

dynamic range compression for perception of the recorded

images is substantially weaker than for the scene itself. Fig. 1

is a case in point. There is no linear representation of this

image, such as the viewing of the image on a gamma-corrected

cathode ray tube (CRT) display, which even comes close to

the dynamic compression occurring during scene observa-
tion. The same is true for all scenes we have studied with

major lighting variations. We offer the possible explanation

that weak dynamic range compression can result from the

major differences in angular extent between scene and image

viewing. Image frames are typically about 40 ° in angular
extent for a 50 mm film camera. These same frames are

usually viewed with about a 10° display or photographic

print. Furthermore, the original 40 ° frame is taken out of

the larger context, which would be present when observing
the scene directly. The dynamic range compression of human

vision is strongly dependent upon the angular extent of visual

phenomena. Specifically, compression is much stronger for
large shadow zones than for smaller ones. We feel that this

a plausible resolution for this apparent paradox, and are

certainly convinced by considerable experience that recorded

images do need computational dynamic range compression for

scenes that contain significant lighting variations. Likewise,

this explanation applies to color consistency.
Since the nonlinear nature of the MSR makes it almost

impossible to prove its generality, we provide the results of

processing many test images as a measure of confidence in

its general utility and efficacy. Results obtained with test

scenes--i.e., where direct observation of the subject of the

image is possible--are given more weight because the per-

formance of the computation can be compared directly to
observation of the scene.

II. THE PHOTOMETRY OF SCENES COMPARED TO PERCEPTION

We approached learning more about the dynamic range

compression in human vision by exploring the perceptual and

photometric limits. We did this by selecting and measuring
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TABLE I

PHOTOMETRY OF SCENES

Visual saturation (white clouds near sun)
Just below saturation (clouds further from sun)
Outdoor building facade---bright sun
Blue sky--morning
Concrete sidewalk in

sun 3200
shadow 570

deepshadow 290

Interiorconferenceroom-fluorescentlighting
Floor/walls 36-140
Shadows 4-18

Interiorconferenceroom-unlitbut by window
Walls 29
Shadows 6

Insideopen closet 1

ed/m 2
49,000
18,000-37,000
7000-13,000
4600

scenes with increasingly emphatic lighting variations and then

examining the point at which dynamic range compression
gives way to loss of visual information. In other words,

we looked for the dynamic range extremes at which human

vision either saturates or clips the signals from very dark

zones in a scene. We used a photographic spotmeter for

the photometric measurements. In addition, we attempted to

calibrate the perceptual lightness difference that occurs when

the same surface is viewed in direct sunlight and in shadow. To

quantify this difference, we compared the perceived lightness

under both conditions to a reference gray-scale in direct sun

and asked the question: Which gray scales match the surface in

sun and shadow? Whereas the extreme measurements provide

information about where dynamic range compression becomes

lossy, the sun/shadow/gray-scale matches give some measure

of the dynamic range compression taking place within more

restricted lighting changes.

The results of the photometric measurements are given in

Table I. The conditions shown are representative of the wide

dynamic range encountered in many everyday scenes. Scene

visibility is good except under the most extreme lighting

conditions. On the low end, visibility is quite poor at 1

candles/m 2 (cd/m z) luminance but improves rapidly as light

levels approach 10 cd/m 2. Detail and color are quite easily

visible across the range of 10-10000 cd/m 2, even when all

occur together in a scene. We can therefore conclude that dy-

namic range compression within a scene can approach 1000: 1,

but becomes lossy for wider ranges. For low luminance, color

and detail are perceptually hazy with a loss of clarity; and

for extremely low levels of luminance (approaching 10000: l

when compared with direct sunlight), all perception of color
and detail is lost.

We can also quantitatively estimate from this data the

difference between perception and photometry for a very

commonly encountered case: objects in sun and shadow.

The drop in light level usually associated with a shadow

is between 10-20% of the sunlit value, depending on the

depth of the shadow. We compared the perceived drop in

lightness to a reflectance gray-scale and concluded that the

perceptual decrease is only about 50% of the sunlit lightness

value. This clearly demonstrates the large discrepancy between

recorded images and perception, even for conditions that do

not encompass a very wide dynamic range. This data implies

that for 10:1 changes in lighting, the perception of these

changes is about 3-5:1 to minimize the impact of lighting

on the scene representations formed by consciousness. Hence,

as simple and ubiquitous an event as a shadow immediately

introduces a major discrepancy between recorded images and

visual perception of the same scene. This sets a performance
goal derived from human visual perception with which to test

the retinex. Clearly, a very strong nonlinearity exists in human

vision, although our experiments can not define the exact form

of this neural computation.

III. CONSTRUCTION OF A MULTISCALE

CENTER/SURROUND RETINEX

The single-scale retinex [10]-[12] is given by

R,(x,y) = log Ii(x.y) - log [F(x,y) * I,(x,.z/)] (1)

where R,(x. y) is the retinex output, Ii(x. y) is the image dis-

tribution in the ith spectral band, "*'" denotes the convolution

operation, and F(x. y) is the surround function

F(x. y) = Ke -C'/C_"

where c is the Gaussian surround space constant, and K is
selected such that

ff r(z, dx dy = 1.Y)

The MSR output is then simply a weighted sum of the outputs

of several different SSR outputs. Mathematically.

N

R.MSR, = E w.R., (2)

where N is the number of scales. R,_, is the ith component

of the nth scale, R,xtsrt, is the /th spectral component of the

MSR output, and wn is the weight associated with the nth

scale. The only difference between R(x.y) and R.,(x.y) is

that the surround function is now given by

F,_(x,y) = Ke -_°'/c_.

A new set of design issues emerges for the design of the

MSR in addition to those for the SSR [10]. This has primarily

to do with the number of scales to be used for a given

application, and how these realizations at different scales

should be combined. Because experimentation is our only

guide in resolving these issues, we conducted a series of tests

starting with only two scales and adding further scales as

needed. After experimenting with one small scale (c, < 20)
and one large scale (c,, > 200). the need for a third interme-

diate scale was immediately apparent in order to produce a

graceful rendition without visible "halo" artifacts near strong

edges. Experimentation showed that equal weighting of the
scales--w,_ = 1/3,_ = 1,2.3--was sufficient for most
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15 pixels

250 pixels

Original image

80 pixels

Multiscale

Fig, 2, Components of the multiscale retinex that show their complementary information content. The smallest scale is strong on detail and dynamic

range compression and weak on tonal and color rendition. The reverse is true for the largest spatial scale. The multiscale retinex combines the strengths

of each scale and mitigates the weaknesses of each.

applications. Weighting the smallest scale heavily to achieve

the strongest dynamic range compression in the rendition leads

to ungraceful edge artifacts and some graying of uniform color
zones.

To test whether the dynamic range compression of the MSR

approaches that of human vision, we used test scenes that we

had observed in addition to test images that we had obtained

from other test sources. The former allowed us to readily

compare the processed image to the direct observation of

the scene. Fig. 2 illustrates the complementary strengths and

weaknesses of each scale taken separately and the strength

of the multiscale synthesis. This image is representative of a

number of test scenes (see Fig. 3) where for conciseness we

show only the multiscale result.

The comparison of the unprocessed images to the perception

of the scene produced some striking and unexpected results.

When direct viewing was compared with the recorded image,

the details and color were far more vivid for direct viewing

not only in shadowed regions, but also in the bright zones

of the scene! This suggests that human vision is doing even

more image enhancement than just strong dynamic range

compression, and the MSR may ultimately need to be modified

to capture the realism of direct viewing. Initially, we tackle the

dynamic range compression, color consistency, and tonal/color

rendition problems, while keeping in mind that further work

may be necessary to achieve full realism.

A sample of image data for surfaces in both sun and shadow

indicates a dynamic range compression of 2:1 for the MSR

compared to the 3-5:1 measured in our perceptual tests.

For the SSR (cl = 80) this value is 1.5:1 or less. These

levels of dynamic range compression are for outdoor scenes

where shadows have large spatial extent. Shadows of small

spatial extent tend to appear "'darker" and are more likely to

be clipped in recorded images. Fig. 3 shows a high dynamic

range indoor/outdoor scene. The foreground orange book on

the gray-scale is compressed by approximately 5:1 for the

MSR while compression for the SSR is only about 3:1,

both relative to the bright building facade in the background.
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Fig. 3. Examples of test scenes processed with the multiscale retinex prior to color restoration. While color rendition of the left image is good, the
other two are "grayed" to some extent. Dynamic range compression and tonal rendition are good for all and compare well with scene obse_'ation Top
row: Original. Bottom row: Multiscale retinex.

The compression for human vision is difficult to estimate
in this case. since both the color and texture of the two

surfaces are quite different. Our impression from this analysis

is that the MSR is approaching human vision's performance

in dynamic range compression but not quite achieving it. For

scenes with even greater lighting dynamics than these, we

can anticipate an even higher compression for the MSR to

match human vision. However, we are currently unable to

test this hypothesis because the conventional 8-b analog-to-

digital converters of both our solid-state camera and slide

film/optical scanner digitizer restrict the dynamic range with

which the image data for such scenes can be acquired. Solid

state cameras with 12-b dynamic range and thermoelectrically

cooled detector arrays with 14-b dynamic range are, however,

commercially available, and can be used for examining the

MSR performance on the wider dynamic range natural scenes.

Even for the restricted dynamic range shown in Fig. 3 (left),

it is obvious that limiting noise has been reached, and that

much wider dynamic range image acquisition is essential for

realizing a sensor/processing system capable of approximating
human color vision.

For the conventional 8-b digital image range, the MSR

performs well in terms of dynamic range compression, but its

performance on the pathological classes of images examined

in previous SSR research [10] must still be examined. Fig. 4

shows a set of images that contain a variety of regional and

global gray-world violations. The MSR, as expected, fails

to handle them effectively--all images possessing notable,
and often serious, defects in color rendition (see Fig. 4.

middle row). We only provide these results as a baseline for

comparison with the color restoration scheme, presented in the
next section, that overcomes these deficiencies of the MSR.

IV. A COLOR RESTORATION METHOD

FOR THE MULTISCALE RETINEX

The general effect of retinex processing on images with
regional or global gra_,-world violations is a "graying out"

of the image, either globally or in specific regions. This
desaturation of color can, in some cases, be severe (see

Fig. 4, middle). More rarely, the gray-world violations can

simply produce an unexpected color distortion (see Fig. 4,

top left). Therefore, we consider a color restoration scheme

that provides good color rendition for images that contain

gray-world violations. We, of course, require the restoration to

preserve a reasonable degree of color consistency, since that
is one of the prime objectives of the retinex. Color constancy

is known to be imperfect in human visual perception, so

some level of illuminant color dependency is acceptable,

provided it is much lower than the physical spectrophotometric
variations. Ultimately, this is a matter of image quality, and
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Fig, 4. Pathological "'gray-world" violations are not handled well by the multiscale retinex alone (middle rowl. but are treated successfully when color
restoration is added (lower row}. Top row: Original,

color dependency is tolerable to the extent that the visual

defect is not visually too strong.

We begin by considering a simple colorimetric transform
[13], even though it is often considered to be in direct

opposition to color constancy models. It is also felt to describe

only the so-called "'aperture mode" of color perception, i.e.,

restricted to the perception of color lights rather than color

surfaces [14]. The reason for this choice is simply that it

is a method for creating a relative color space, and in so
doing becomes less dependent than raw spectrophotometry

on illuminant spectral distributions. This starting point is

analogous to the computation of chromaticity coordinates
where

S

z:(z, v) = y)
i=l

(3)

for the ith color band, and S is the number of spectral channels.

Generally, S = 3, using the red-green-blue (RGB) color

space. The modified MSR that results is given by

RMSRCa, (X, y) = Ci (x, y)RMsa, (x, y) (4)

where

Ci(x. y) = f[I;(x, y)]

is the ith band of the color restoration function (CRF) in the

chromaticity space, and RMSRCa, is the ith spectral band

of the multiscale retinex with color restoration. In a purely
empirical manner, we tried several linear and nonlinear color

restoration functions on a range of test images. The function

that provided the best overall color restoration was

Ci(x, y) =/3 log[c_I[(x, y)]

log[ L (x, y)] -log I (x,y) (5)

where /3 is a gain constant, and o_ controls the strength of

the nonlinearity. In the spirit of a preserving a canonical

computation, we determined that a single set of values for
and c_ worked for all spectral channels. The final MSRCR

output is obtained by using a "canonical" gain/offset to transi-

tion between the logarithmic domain and the display domain.
Looking at the forms of the CRF of (5) and the SSR of

(1), we conjecture that the CRF represents a spectral analog

to the spatial retinex. This mathematical and philosophical
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TABLE II

LIST OF CONSTANTS USED FOR ONE PARTICULAR IMPLEMENTATION OF THE

MSRCR ON A DEC ALPHA 3000. USING THE VMS F'77 COMPILER

Constant [ N cl c2 ca G b a /3 w,_

Value I 3 15 80 250 192 -30 125 46 1/3

symmetry is intriguing, since it suggests that there may be a
unifying principle at work. Both computations are nonlinear,

contextual, and highly relative. We can speculate that the

visual representation of wide dynamic range scenes must be a

compressed mesh of contextual relationships for lightness and

color representation. This sort of information representation

would certainly be expected at more abstract levels of visual

processing such as form information composed of edges, links,

and the like, but is surprising for a representation so closely

related to the raw image. Perhaps in some way this front-end

computation can serve later stages in a presumed hierarchy of

machine vision operations that would ultimately need to be

capable of such elusive goals as resilient object recognition.

The bottom row in Fig. 4 shows the results of applying the

CRF to the MSR output for pathological images. The MSRCR

provides the necessary color restoration, eliminating the color

distortions and gray zones evident in the MSR output. The

challenge now is to prove the generality of this computation.
Since there is not a mathematical way to do this, we have

tested the computation on several hundred highly diverse

images without discovering exceptions. Unfortunately, space

considerations allow us to present only a very small subset of

all the images that we have tested.

V. SELECTED RESULTS FOR DIVERSE TEST CASES

Extensive testing indicates that the gain constant a for

the CRF and the final gain/offset adjustment required to

transition from the logarithmic to the display domain are

independent of the spectral channel and the image content.

This implies that the method is general or "canonical," and

can be applied automatically to most (if not all) images

without either interactive adjustments by humans or internal

adjustments such as an auto-gain. This final version of the
MSRCR can then be written as

R.MSRCR. (X, y) = G[C, (x, y){log Ii(x. y)

- log[I,(x,y) * F,_(z,y)]} + b] (6)

where G and b are the final gain and offset values, respec-

tively. The constants G and b intrinsically depend upon the

implementation of the algorithm in software. Table II gives
a list of the constants used to produce all the outputs in this

paper.
We must again emphasize that the choice of the all constants

merely represents a particular implementation that works well

for a wide variety of images. In no way do we mean to imply

that these constants are optimal or "best case" for all possible

implementations of this algorithm. The choice of the surround

space constants, c,,s, in particular does not seem to be critical.
Instead, the choice seems to only need to provide reasonable

coverage from local to near global. Likewise, the choice of us-

ing three scales was made empirically to provide the minimum
number of scales necessary for acceptable performance.

The test images presented here begin with some test scenes

since we feel it is fundamental to refer the processed images

back to the direct observation of scenes. This is necessary to

establish how well the computation represents an observation.

Clearly, we cannot duplicate human vision's peripheral vision

which spans almost 180 ° , but within the narrower angle

of most image frames, we would like to demonstrate that

the computation achieves the clarity of color and detail in

shadows, reasonable color constancy and lightness and color

rendition that is present in direct observation of scenes. The

test scenes (see Fig. 5) compare the degree with which the

MSRCR approaches human visual performance. All four of

the MSRCR outputs shown in Fig. 5 are quite "true to life"

compared to direct observation, except for the leftmost, which

seems to require even more compression to duplicate scene

perception. This image was scanned from a slide and digitized

to 8-b/color. The other three images were taken with a Kodak

DCS200C CCD detector array camera. In none of the cases

could a gamma correction produce a result consistent with
direct observation. Therefore, we conclude that the MSRCR

is not correcting simply for a CRT display nonlinearity, and

that far stronger compression than gamma correction is nec-

essar 3' to approach fidelity to visual perception of scenes with

strong lighting variations. We did not match camera spatial

resolution to observation very carefully, so some difference in

perceived detail is expected and observed. However, overall

color, lightness, and detail rendering for the MSRCR is a good

approximation to human visual perception.

The rest of the selected test images (Figs. 6--8) were ac-

quired from a variety of sources (see acknowledgments) and

provide as wide a range of visual phenomena as we felt

could be presented within the framework of this paper. Little

comment is necessary and we will leave the ultimate judgment

to the reader. Some images with familiar colors and no strong

lighting defects are included to show that the MSRCR does

not introduce significant visual distortions into images that are

without lighting variations. The white stripes of the American

flag in Fig. 6(a) show a shift toward blue-green in the MSRCR

output. This is, perhaps, analogous to the simultaneous color
contrast phenomena of human perception. Moore et aI. [8]

noted a similar effect in their implementation of a different

form of the retinex. The Paul Klee painting in Fig. 7(b} is

included as a test of the subtlety of tonal and color rendition.

Some of the test images with strong shadows zones where one

or two color channels are preferentially clipped do exhibit a

color distortion. This is due to the rather limited dynamic range

of the "front-end" imaging/digitization, and is not an artifact of

the computation. Even for these cases, the MSRCR produces
far more visual information and is more "true-to-life" than the

unprocessed image. The set of space images are included to

show the application of the MSRCR to both space operations

imagery and remote sensing applications.
A further test is worthwhile in assessing the impact of the

CRF on color consistency. The CRF, as expected, dilutes color

consistency, as shown in Fig. 9. However, the residual color

dependency is fairly weak and the visual impression of color
shift is minimal especially in comparison with the dramatic

shifts present in the unprocessed images.
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Fig, 5. Test scenes illustrating dynamic range compression, color, and tonal rendition, and automatic exposure correction. All processed images compare

favorably with direct scene observation with the possible exception of leftmost image, which is even lighter and clearer for observation. This scene has the widest

dynamic range and suggests that even stronger dynamic range compression may be needed for this case. Top row: Original. Bottom row: Multiscale retinex.

Fig. 6. Photographic examples further illustrating graceful dynamic range compression together with tonal and color rendition• The rightmost image
shows the processing scheme handling saturated colors quite well and not distorting an image that is quite good in its original form. Top row: Original.
Bottom row: Muhiscale retinex.

VI. DISCUSSION

While we have not yet conducted an extensive performance

comparison of the MSRCR to other image enhancement meth-

ods, we have done some preliminary tests of the MSRCR rel-

ative to the simpler image enhancement methods--histogram

equalization, gamma correction, and gain/offset manipula-

tion [15], and point logarithmic nonlinearity [16]. Overall,

the performance of the retinex is consistently good, while

performance for the others is quite variable. In particular,

the retinex excels when there are major zones of both high

and low light levels. The traditional methods that we have

compared against are all point operations on the image,
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Fig. 7. Miscellaneous examples illustrating fairly dramatic dynamic range compression as well one for subtlety of color rendition (second from

leftmost--painting by Paul Klee). Top row: Original. Bottom row: Muhiscale retinex.

Fig, 8. Selection of space images to show enhancement of space operations imagery and remote sensing data. Top row: Original. Bottom row:
Multiscale retinex,

whereas unsharp masking [17] and homomorphic filtering

[17], [18] are spatial operations more mathematically akin to

center/surround operation of the retinex. Unsharp masking is

a linear subtraction of a blurred version of the image from

the original and is generally applied using slight amounts of

blurring. For a given space constant for the surround, we would

expect the retinex to be much more compressive. It is not

clear that unsharp masking would have any color constancy

property, since the subtraction process in the linear domain is

essentially a highpass filtering operation and not a ratio that

provides the color constancy of the retinex.

Homomorphic filtering is perhaps the closest computation

to the MSRCR and in one derivation [19] has been applied

to color vision. Both its original form and the color form rely

upon a highpass filtering operation that takes place after the

dynamic range of the image is compressed with a point log-
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skylight daylight tungsten

Fig, 9. Toy scene revisited. A test of the dilution of color consistency by the color restoration. While color consistency was shown previously to be near

perfect for the SSR and MSR. some sacrifice of this was necessary, to achieve color rendition. While slight changes in color can be seen. color consistency is still

quite strong relative to the spectrophotometric changes seen in the original images (top fowl. The blues and yellows are in the color restored multiscale retinex

lbottom row) are the most affected by the computer simulated spectral lighting shifts, but the effect is visually weak and most colors are not visibly affected.

arithmic nonlinearity. An inverse exponentiation then restores

the dynamic range to the original display space. The color

vision version adds an an opponent-color/achromatic transfor-

mation after the application of the logarithmic nonlinearity. We

have found that the application of the logarithmic nonlinearity

before spatial processing gives rise to emphatic "halo" artifacts

and have also shown that it is quite different visually and math-

ematically from the application of the log after the formation

of the surround signal [10]. Because of the nonlinearities in

both the MSRCR and homomorphic filtering, a straightforward

mathematical comparison is not possible. We do, however,

anticipate significant performance differences between the two

in terms of dynamic range compression, rendition, and, for the

color vision case, color consistency. Another major difference

between the MSRCR and homomorphic filtering is in the

application of the inverse function in homomorphic filtering.

The analogous operation in the MSRCR is the application of

the final gain/offset. Obviously, the two schemes use quite

different techniques in going from the nonlinear logarithmic

to the display domain. We conjecture that the application of

the inverse log function in the retinex computation would undo

some of the compression it achieves.

One of the most basic issues for the use of this retinex is

the trade-off between the advantages versus the introduction

of context dependency on local color and lightness values.

Our experience is that the gains in visual quality, which can

be quite substantial, outweigh the relatively small context

dependency. The context dependencies are perhaps of most

concern in remote sensing applications. The strongest context

dependencies occur for the dark regions that are low because

of low scene reflectances--for example, large water areas in

remote sensing data adjacent to bright land areas. The large

zones of water are greatly enhanced and subtle patterns in

them emerge. The retinex clearly distorts radiometric fidelity

in favor of visual fidelity. The gains in visual information, we

hope, have been demonstrated adequately in our results. Even

for specific remote sensing experiments where radiometric

fidelity is required, the retinex may be a necessary auxilia_

tool for the visualization of overall patterns in low signal

zones. Visual information in darker zones that may not be

detected with linear representations which preserve radiometry

will "pop out" with a clarity limited only by the dynamic range

of the sensor front-end and any intervening digitization scheme

employed prior to the retinex. This may be especially useful
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in visualizing patterns in remote sensing images covering
land and water. Water has a much lower reflectance than

land especially for false-color images including a near-infrared

channel. The ability of the MSRCR to visualize features within

both land and water zones simultaneously should be useful in

coastal zone remote sensing.

The retinex computation can be applied ex post facto on 8-b

color images and all of the results presented here represent this
application. We have noticed only one problem with this--that

the retinex can and will enhance artifacts introduced by lossy
coding schemes, most notably lossy JPEG. Hence, the retinex

is best applied prior to lossy image coding. One obvious

advantage that the MSRCR provides for image compression is
its ability to compress wider dynamic ranges to 8-bit or less

per band color output, while preserving, and even enhancing,

the details in the scene. The overall effect then is a significant

reduction in the number of bits (especially in cases where

the original color resolution is higher than 8-b/band) required

to transmit the original without a substantial loss in spatial

resolution or contrast quality.

The greatest power and advantage of the retinex is as

a front-end computation, especially if the camera is also

capable of wider than 8-b dynamic range. We have seen from

scene photometry that 10-12-b dynamic ranges are required

to encompass everyday scenes. Obviously, the retinex is most

powerful as a front-end computation if it can be implemented

within a sensor or between the sensor and coding/archival

storage. We have not tested this retinex on wide dynamic range

images, since we do not yet have access to an appropriate

camera, therefore for wider dynamic range images some

modifications in the processing may be anticipated. This may

involve adding more scales, especially smaller ones. to provide

a greater but still graceful dynamic range compression.

We have encountered man 3' digital images in our testing that

are underexposed. Apparently even with modern photographic

autoexposure controls, exposure errors can and do occur. An

additional benefit of the MSRCR is it capacity for exposure

correction. Again, this is especially beneficial if it is performed

as a front-end computation.

We do have the sense from our extensive testing thus far

that the MSRCR approaches the high degree of dynamic range

compression of human vision but may not quite achieve a

truly comparable level of compression. Our impressions of
the test scene cases is that direct observation is still more

vivid in terms of color and detail than the processed images.

This could be due to limitations in display/print media, or it

could be that the processing scheme should be further designed

to produce an even more emphatic enhancement. Further

experimentation comparing test scenes to processed images

and an accounting for display/print transfer characteristics will

be necessary to resolve this remaining question and refine the

method if necessary in the direction of greater enhancement

of detail and color intensity. The transfer characteristics of

print/display media deserve further investigation since most

CRT's and print media have pronounced nonlinear properties.

Most CRT's have an inverse "gamma" response [17] and

the specific printer that we have used (Kodak XLT7720

thermal process) has a nonlinear response. For the printed

results shown, we used a modest gamma correction ("r =

1.2). While this does not represent an accurate inverse that

linearizes the printer transfer function, it does capture the

the visual information with a reasonable good and consistent

representation. Obviously no matter how general purpose the

MSRCR is, highest quality results will still need to account

for the specifics of print/display media especially since these
are so often nonlinear.

VII. CONCLUSIONS

The MSR, comprised of three scales (small, intermediate,

and large), was found to synthesize dynamic range compres-

sion, color consistency, and tonal rendition, and to produce

results that compare favorably with human visual perception.

except for scenes that contain violations of the gray-world

assumption. Even when the gray-world violations were not
dramatic, some desaturation of color was found to occur. A

color restoration scheme was defined that produced good color

rendition even for severe gray-world violations, but at the

expense of a slight sacrifice in color consistency. In retrospect,

the form of the color restoration is a virtual spectral analog

to the spatial processing of the retinex. This may reflect some

underlying principle at work in the neural computations of

consciousness: perhaps, even that the visual representation of

lightness, color, and detail is a highly compressed mesh of

contextual relationships, a world of relativity and relatedness

that is more often associated with higher levels of visual

processing such as form analysis and pattern recognition.
While there is no firm theoretical or mathematical basis

for proving the generality of this color restored MSR. we

have tested it successfully on numerous diverse scenes and

images, including some known to contain severe gray-world

violations. No pathologies have yet been observed. Our tests
were. however, confined to the conventional 8-b dynamic

range images, and we expect that some refinements may be
necessary when the wider dynamic range world of 10-12-b

images is engaged.
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